
Numerical Difficulties in Pre-University
Informatics Education and Competitions

Gyula Horváth∗
University of Szeged

Hungary

Tom Verhoeff†

Eindhoven Univ. of Techn.
The Netherlands

March 2003
—

Keywords: informatics education, informatics competitions, floating-point
arithmetic, numerical mathematics

Abstract

It is easy to underestimate the difficulties of using floating-point numbers
in programming. This is especially the case in pre-university informatics
education and competitions, where one is often led to believe that floating-
point arithmetic is a good approximation of the real number system. How-
ever, most of the mathematical laws valid for real numbers break down when
applied to floating-point numbers. We explain this break-down and illustrate
it with four simple examples. The basic concepts of numerical mathematics
are introduced along the way.

In informatics education and competitions, the students need to be trained,
programming assignments need to be formulated, submitted programs need
to be evaluated, and variations among computing platforms need to be han-
dled. We show that the use of floating-point numbers gives rise to various
kinds of non-trivial difficulties in all these areas. Coping with such difficul-
ties would require that teachers, students, and organizers gain experience in
numerical mathematics.

We strongly recommend to avoid the use of floating-point numbers in pre-
university education and competitions whenever possible. If you do want to
use floating-point numbers, then study the literature of numerical mathemat-
ics and be prepared to do a convincing error analysis.

1 Introduction

Non-integer numbers are introduced in mathematics education soon after pupils are
familiar with the integers. In primary education, pupils learn to deal with fractions

∗Horvath@inf.U-Szeged.HU
†T.Verhoeff@TUE.NL

1



and percentages, and with fixed-point currency values. In secondary education,
they also encounter the real number system as closure of the rational numbers.
The square root of two is a real number, but not a fraction (of integer numbers).
These real numbers play an important role in all sciences, especially physics, where
continuous mathematical models are used.

In many science classes, pocket calculators are used to help solve numerical
problems. For that purpose, these calculators must support the so-called scien-
tific notation, where a number is expressed as the product of a number between 1
and 10 (the decimal portion), and a power of 10 (the exponential portion). The
motivation usually given for this notation is that it simplifies the handling of very
small (near zero) and very large numbers. Often less well explained is the notion
of approximation and significance.

Every serious programming language provides floating-point numbers to tackle
numerical problems involving non-integer calculations. These floating-point num-
bers are the computer’s scientific notation. For instance, Pascal has the type real,
and C, C++, and Java have the type float. In fact, there are often several floating-
point types to choose from.

For some people, the obvious conclusion from these observations seems to
be that programming education at the pre-university level must include the use
of floating-point numbers. Often, they presume that floating-point numbers can
be treated like integers when designing programming exercises and competition
problems.

In this paper, we point out various kinds of difficulties that arise when using
floating-point numbers. Some of these difficulties are fairly straightforward, but
others are quite subtle. It is important to understand these difficulties if one wishes
to maintain a high quality standard in science education.

As an omen, we quote D. E. Knuth (Knuth, 1997):

“Floating point computation is by nature inexact, and programmers can eas-
ily misuse it so that the computed answers consist almost entirely of “noise.”
One of the principal problems of numerical analysis is to determine how ac-
curate the results of certain numerical methods will be. There is a “credibility-
gap”: We don’t know how much of the computer’s answers to believe. Novice
computer users solve this problem by implicitly trusting in the computer as
an infallible authority; they tend to believe that all digits of a printed answer
are significant. Disillusioned computer users have just the opposite approach;
they are constantly afraid that their answers are almost meaningless.”

1.1 Overview

In the remainder of this article, the terms ‘floating-point’ and ‘real’ can often be
replaced by the more general term ‘non-integer’. Special cases of non-integer
numbers include fixed-point and rational numbers. Many of the concerns about
floating-point numbers apply to those as well.

We start with four programming examples involving floating-point numbers.
The next section presents some of the basic concepts and terminology of numeri-

2



cal mathematics. Then we analyze the examples and point out various difficulties,
introducing further concepts where needed. In §5, we investigate the difficulties
encountered when using floating-point numbers in education and competitions, es-
pecially in the International Olympiad in Informatics. Because the literature on
numerical mathematics is so vast, we have included some guidance in §6. We
conclude the paper with some recommendations.

2 Four examples

The following examples show simple computing situations in which floating-point
numbers may cause trouble. The actual difficulties will be explained in §4.

Count down The first example involves the following program, here shown
in Pascal (left) and C (right):

const D = 0.1;
var x: Real;

begin
x := 1.0

;
while x > 0.0 do
x := x - D

;
writeln ( x:1:2 )

end.

#include <stdio.h>
#define D 0.1

int main ( void )
{ double x = 1.0;

while ( x > 0.0 )
x = x - D;

printf ( "%1.2f\n", x );
}

Can you tell what value this program prints, without running it? The result may de-
pend on your computing platform. You can experiment with the type of variable x
(single versus double), and the value of constant D (0.1 versus 0.01).

Euclidean paths For the second example, consider these four points in 3D
space:

A B C D
(2, 5, 31) (1, 2, 9) (0, 7, 27) (1, 8, 10)

(1)

All these points have innocent coordinates: small integers. Consider the two V-
shaped paths via the origin O: AO B and C O D. Are the lengths of these two
paths equal? If not, which is bigger? Now also tackle the case with

A B C D
(4, 12, 28) (2, 6, 14) (1, 1, 23) (1, 13, 19)

(2)

Pick up your favorite calculator or programming language and go ahead.
Parallel resistors The third example concerns the computation of the effec-

tive resistance of two parallel resistors (see Figure 1). Write a program to compute
the effective resistance, given the non-negative values R1 and R2 as input.

3



R1

R2

Figure 1: Two parallel resistors: what is the effective resistance?

Quadratic equation As our fourth example we consider the equation

ax2 + bx + c = 0 (3)

where parameters a, b, and c are given real constants and x is a real variable whose
value(s) satisfying (3) must be determined. Write down your choice of conditions
to impose on the parameters to make this into a practical programming assignment.
You may decide whether to include the case analysis caused by zero parameters.
Then solve your own assignment. Finally, explain how you would evaluate pro-
grams that are handed in to solve your assignment.

3 Numerical mathematics

We will not present a complete introduction into the field of numerical mathemat-
ics. That would take up too much space, and others have already done so (see §6).
However, it is important to know some of the concepts and terminology.

We denote the set of real numbers by R, and by F its subset of floating-point
numbers representable on our hypothetical computing platform. Note that F is
a finite subset of the rational numbers and that it depends on the specifics of the
computer hardware, operating system, and programming language (compiler). On
PCs, F usually includes numbers x of the form

x = f × 2e (4)

where the fraction f and exponent e are numbers from a limited set: f × 2t is an
integer with f = 0 or 1 ≤ | f | < 2, and e is an integer with emin ≤ e ≤ emax, for
appropriate integers t , emin, and emax. Note that terminology in the literature varies:
some authors prefer to work with the ‘mantissa’ f × 2t or the fraction f/2 instead
of f , applying an appropriate shift to the exponent. The value p = t + 1 is the
number of bits in the binary representation of f ; it is called the precision of F.

The number 1 is represented by ( f, e) = (1, 0). The smallest floating-point
number larger than 1 is 1 + ε with ε = 2−t called the machine epsilon of F.
The smallest positive floating-point number is Nmin = 2emin and the largest one is
Nmax = (2 − ε)2emax . Typical values of t , emin, emax, and ε are shown in Table 1.
The interval Nmin to Nmax is called the range of F. Note that Nmin � ε.

Most operations on R are not closed in F. When such operations are simulated
on a computer, the result is forced into F, yielding an approximation of the exact

4



Type Size t emin emax ε Range
Single 32 bits 23 −126 127 2−23 ≈ 1.2 × 10−7 ≈ 10±38

Double 64 bits 52 −1022 1023 2−52 ≈ 2.2 × 10−16 ≈ 10±308

Table 1: Parameters for normalized binary IEEE floating-point numbers

result. This may introduce a (small) rounding error into floating-point calcula-
tions. Subsequent operations on inexact results can magnify, or reduce, the error
in non-intuitive ways. The aim of error analysis is to understand the propaga-
tion of errors in numerical algorithms, in particular to prove bounds on the error in
the final result. Doing an error analysis is a constant struggle between being too
optimistic and being too pessimistic.

Students generally assume that the floating-point numbers F form an adequate
model of the real numbers R. Especially, they assume that every identity valid
for real numbers, like the associative law (x + y) + z = x + (y + z), also holds
for floating-point numbers. To express this assumption formally, let fl : R → F

be an approximation function from the real numbers to the floating-point num-
bers. That is, fl(x) is the floating-point number nearest to real number x . For any
computation A : R

n → R with n real inputs and one real output we denote the
corresponding machine computation by Â : F

n → F. The assumption is that the
following diagram commutes.

R
n fln

−−−→ F
n�A

�Â

R
fl−−−→ F

(5)

This is equivalent to the requirement that the basic arithmetic operations � ∈
{ +, −, ×, / } satisfy the equation

fl(x � y) = fl(x) �̂ fl(y) (6)

for all real numbers x and y, where �̂ denotes the machine implementation of
the operation �. In other words, fl is assumed to be a homomorphism from the
algebra over the real numbers R to the algebra over the floating-point numbers F.
Unfortunately, this is not true. As a counterexample, imagine that our hypothetical
machine works with two decimal digits only. We then have

fl(1.06 + 3.06) = fl(4.12) = 4.1 �= 4.0 = 1.0 +̂ 3.0 = fl(1.06) +̂ fl(3.06)

The IEEE standard for floating-point arithmetic does require that

x �̂ y = fl(x � y) (7)

for all floating-point numbers x and y. Since fl(x) = x for x ∈ F, this means that
(6) at least holds in F.

5



Even floating-point computations that yield a boolean value rather than a real
value are to be suspected. This can be understood by considering the evaluation of
the following comparison:

5.3 × 0.2 + 5.1 × 0.6 < 1.1 × 1.9 + 5.1 × 0.4 (8)

The exact evaluation of the multiplications yields the (obviously true) inequality:

1.06 + 3.06 < 2.09 + 2.04 (9)

On our hypothetical machine working with two-digit decimal numbers only, the
four multiplication results are rounded before the additions are done. By approxi-
mation we would then obtain the (obviously false) inequality:

1.1 + 3.1 < 2.1 + 2.0 (10)

Indeed, the left-hand side is now larger than the right-hand side. Note that the
additions are done exactly on our hypothetical machine.

4 Analyzing the four examples

Let us look at the four examples in turn.
Count down The value D = 0.1 cannot be represented exactly as a binary

floating-point number, because 1/10 has an infinite repeating binary representa-
tion:

0.0001100110011001100110011001100 . . . =
∞∑

k=1

3/24k+1 (11)

Therefore, in the program we have D = fl(0.1) �= 0.1. Subtracting D from 1.0 ten
times in IEEE double precision yields approximately 10−16, which still exceeds 0.
The next subtraction yields −0.10 when printed with two decimals. Paradoxically,
the program prints 0.00 when run with the less precise single format.

Such a loop should have been controlled by an integer, e.g. i = 10 · x . In that
case, x could even be eliminated by using i/10. A common beginner’s mistake is
to take x �= 0.0 as looping condition, in which case the loop might never terminate.

Similar mistakes are the abuse of floating-point numbers for currency calcula-
tions, or for comparing fractions by writing a/b = c/d, or for testing divisibility
by round(a/b) = a/b. Fractions are better compared by a ∗ d = b ∗ c (however,
overflow is a concern), and divisibility is better (and faster) tested by a mod b = 0.

Euclidean paths By applying Pythagoras’ Theorem, we find for the lengths
of the first pair of V-paths:

AO B =
√

990 +
√

86 ≈ 40.73788394060 . . .

C O D =
√

778 +
√

165 ≈ 40.73788394062 . . .

6



The two lengths coincide on the 12 most significant decimal digits, with a dif-
ference on the order of 10−11. They are indistinguishable with single-precision
computer calculation and on many pocket calculators. For the second pair we find

AO B =
√

944 +
√

236 ≈ 46.086874487211645 . . .

C O D =
√

531 +
√

531 ≈ 46.086874487211652 . . .

where the difference is less than 10−14. Are the lengths really different?
For the first pair the answer is ’Yes’, for the second ’No’. The verification can

be carried out in the integer domain, with some care. For the second pair observe
√

944 +
√

236 =
√

16 · 59 +
√

4 · 59 = 6
√

59√
531 +

√
531 =

√
9 · 59 +

√
9 · 59 = 6

√
59

For the first pair, the assumption of equality leads to a contradiction by three squar-
ings and subsequent simplifications:

√
990 +

√
86 =

√
778 +

√
165

990 + 2
√

990 · 86 + 86 = 778 + 2
√

778 · 165 + 165

133 = 2 ·
(√

778 · 165 −
√

990 · 86
)

1332 = 4 ·
(

778 · 165 − 2
√

778 · 165 · 990 · 86 + 990 · 86
)

8
√

778 · 165 · 990 · 86 = 4 · (778 · 165 + 990 · 86) − 1332

64 · 778 · 165 · 990 · 86 = 8363512

699482995200 = 699482995201

Note that 32-bit integer arithmetic does not suffice.
The original problem involves small integer coordinates. The results of floating-

point calculations on these numbers must be interpreted carefully. Replacing them
by integer calculations presents other complications. For larger coordinates or
more than two segments in a path, even double-precision calculations do not suf-
fice, and a reduction to integer calculations is a nightmare. This just is not an easy
problem. It is difficult to determine safe bounds on the size of the coordinates and
the number of segments such that floating-point computations can be used naı̈vely
to pick the longer path.

A B

Figure 2: Example assignment of points for task BUS TERMINALS

7



The competition task BUS TERMINALS at IOI 2002 (Day 2) involves a set of
points in the plane with positive integer coordinates at most 5000 (IOI2002, 2002).
The goal is to select two points A and B (called ‘hubs’) from the set and to assign
each of the remaining points to either A or B while minimizing a certain cost
function (see Figure 2). The cost c(P, Q) associated with two points P and Q is
defined by

c(P, Q) = d(P, H(P)) + d(H(P), H(Q)) + d(H(Q), Q) (12)

where d measures the distance between points in the plane and H(X) ∈ { A, B } is
the hub assigned to point X (for convenience, H(A) = A and H(B) = B). The
cost to be minimized is the maximum value of c(P, Q) over all pairs of distinct
points in the given set.

This task uses the Manhattan distance for d to avoid numerical complications.
An earlier formulation was based on the Euclidean distance, which would then re-
quire the comparison of sums of two or three square roots of integers having up
to eight decimal digits. It is far from obvious that double-precision floating-point
calculations would suffice, and it might simply be incorrect. Even if the organiz-
ers would have proved that double-precision suffices, then it is still questionable
whether the contestants could have discovered this. For reasons of speed, a contes-
tant might be tempted to use single precision, and get away with it because the test
cases used for evaluation happen to miss the bad cases where single precision fails.
Stating in the task description that double-precision floating-point suffices to cal-
culate and compare costs (if this would indeed be true), might still get contestants
into trouble if they apply some simple transformations to the cost function (see
Quadratic equation below). Because the actual distance function does not matter
much for the algorithmic aspects of the task, it was decided to use an integer-based
distance function, thereby avoiding floating-point numbers completely.

Parallel resistors Recall that the replacement resistance R for two parallel
resistors R1 and R2 is given by

R = 1
1
R1

+ 1
R2

(13)

However, this formula cannot be used directly when R1 = 0 or R2 = 0, even
though R is well defined in those cases. The program needs to do a case analysis.
Rewriting the formula as

R = R1 · R2

R1 + R2
(14)

helps somewhat, but still is problematic when R1 = 0 = R2. Furthermore, such
rewriting quickly becomes a mess when more than two resistors are involved.
On the other hand, if your computing platform supports the IEEE floating-point
standard, then the first formula can indeed be used, but not the second. The
IEEE floating-point standard includes well-behaved infinities with 1/0 = ∞,

8



∞ + x = ∞, 1/∞ = 0 (actually, zeroes and infinities are signed). However,
0/0 is not defined, yielding a NaN (not-a-number) in IEEE terminology. To use
this standard properly requires some studying. Unfortunately, many programming
languages do not (fully) support the IEEE standard.

Quadratic equation In high school, the a, b, c-formula is taught for solving
quadratic equations:

x1,2 = −b ± √
b2 − 4ac

2a
(15)

In programming classes it is often used to practice the translation of a mathematical
formula into a program expression. Numerically speaking, however, the a, b, c-
formula is not appropriate in many cases. If you apply it to the equation

10−8 × x2 + x − 1 = 0 (16)

and evaluate it in IEEE single precision, you obtain the two roots

x1,2 = 0.000000000, −1.000000000 × 108 (17)

The true positive root is actually 1.0 with an accuracy better than 10−7. Thus, the
positive root computed from the a, b, c-formula is off by 100%. The reason for
this large error is that in the a, b, c-formula for our positive root, the values −b and
+√

b2 − 4ac have opposite signs and are almost equal in size, because |4ac| �
b2. When adding them, the (roundoff) error present in the computed value for
b2 − 4ac is suddenly magnified enormously in relative size. This phenomena is
known as cancellation. Here, it can be avoided by multiplying the numerator and
denominator in the a, b, c-formula by −b ∓ √

b2 − 4ac and simplifying the result,
yielding

x1,2 = 2c

−b ∓ √
b2 − 4ac

(18)

This less-known formula is numerically more suitable in some cases, though there
are even better approaches (e.g. viewing equation (16) as linear).

Sidenotes

Equation (16) may seem quite special, with a ≈ 0. But this is not
so. It could easily arise in practice. Besides, the point is to show
that a program for solving quadratic equations should not apply the
a, b, c-formula carelessly. The formula is correct, but it has numerical
shortcomings.

Furthermore, cancellation occurs whenever |4ac| � b2, also when
a is not close to zero. It then always gives rise to excessive loss of
accuracy. Our example was chosen because of the extreme loss of

9



accuracy: seven orders of magnitude. This is also the case when using
double precision, except that you need to look more carefully!

When experimenting with this equation, one must ensure that single
precision is used for all calculations, especially for the subtraction
b2 − 4ac. When done in higher precision, another approximation for
the positive root is found, but is still seven orders less accurate than
possible at that precision.

The accuracy of an approximation can be expressed in terms of the error with
respect to the exact value. Suppose the exact value x ∈ R is approximated by x̂ ∈ F

through some calculation. The absolute error (in x̂ for x) is defined as

|x − x̂ | (19)

Another measure is the relative error, defined as

|x − x̂ |
|x | (20)

Scientific and engineering applications often involve scaling, e.g. when converting
values to other units. The relative error is preferred because it is invariant under
scaling. It is, however, not defined when x = 0. That makes it inappropriate when
the outcome can be exactly zero.

An accuracy requirement is typically expressed as a bound on the (absolute or
relative) error. Every real number can be approximated by an IEEE single-precision
floating-point number with a relative error less than 10−7, provided it lies within
range. Therefore, an error of 100% in the positive root seems extremely bad. The
alternative formula (18) shows that one can indeed do much better. Even though
(15) and (18) are mathematically identical (in R), they behave very differently in
a numeric sense (in F). This illustrates how dramatic the mismatch between the
algebra of real numbers and that of floating-point numbers can be.

A numerical algorithm is called stable, when it produces answers whose accu-
racy is on the order of what can ‘reasonably’ be expected for the problem at hand.
For the positive root of (16), the a, b, c-formula (15) is unstable, whereas the al-
ternative formula (18) is stable. One of the challenges in numerical mathematics
is to determine what can ‘reasonably’ be expected and to find appropriate stable
algorithms.

Unfortunately, the cancellation mentioned above is not the whole story. Can-
cellation is also possible in the subtraction b2 − 4ac when b2 ≈ 4ac. In this case
it is harder to circumvent, because it is inherent in the problem itself and not a
consequence of a badly chosen algorithm. The parabola is then almost tangent to
the line y = 0. Determining the roots when they are nearly equal is said to be an
ill-conditioned problem.

Furthermore, the squaring b2, the multiplication 4ac, and the final division
by 2a can produce (intermediate) results that fall outside the representable range.

10



This is referred to as underflow or overflow. For b2 and 4ac this can happen even
if the final results are representable within the range of floating-point numbers.

When setting the solution of the quadratic equation as a programming assign-
ment, one needs to worry about

1. the restrictions on the input coefficients a, b, c,

2. what to do in case of roots that are not representable within the range of
floating-point numbers,

3. what to do in case of complex roots,

4. the desired accuracy of the output roots,

5. how to evaluate a quadratic-solving program.

In a high-school setting, one might try to restrict the coefficients such that

• the roots are always real and representable;

• a ‘reasonable’ approach does not suffer from overflow or underflow in inter-
mediate results;

• the problem is not ill-conditioned.

It takes a careful analysis to determine such safe restrictions, and they are either
awkward to formulate, or yield a crippled problem.

The quadratic-solving program becomes much more complicated if it explicitly
needs to deal with the possibility of intermediate overflows and underflows, and
unrepresentable roots. It is extremely difficult to determine the reliability of such
programs merely by testing with specific cases. The burden of proof should be on
the designer, who must provide a convincing argument that the program satisfies
the specification.

5 Using Floating-Point Numbers at the Pre-University Level

In this section, we investigate the difficulties of using floating-point numbers in pre-
university informatics education and competitions. We will consider the following
common aspects:

1. Statement of programming tasks

2. Evaluation of submitted programs

3. Preparation of students

4. Choice of platform (CPU, OS, compiler)

11



We will focus on the International Olympiad in Informatics, rather than a general
educational setting, because it provides a well-defined context.

The International Olympiad in Informatics (IOI) is an annual competition in
computing science (informatics) for talented high-school students from all over the
world (IOI, 2003). Further information can also be found in (Horváth, Verhoeff,
2002). The IOI competition tasks are typically algorithmic in nature. The contes-
tants have to design algorithms that satisfy precise specifications in terms of input,
output, and performance constraints. However, it is not a paper-and-pen exam.
These algorithms must also be implemented in one of the allowed programming
languages1.

IOI competition tasks have traditionally been formulated in terms of integers
and (character) strings, avoiding the use of floating-point numbers. The task de-
scriptions contain a precise specification of bounds on the inputs. These bounds are
chosen in such a way that the resulting problem can be solved within the stated time
and memory limits, and without worrying too much about input/output formats and
integer overflow. Competitors can treat their computer as a good approximation of
an ideal machine as far as integer arithmetic is concerned.

5.1 Stating the tasks

Various kinds of floating-point tasks can be distinguished. First there is the distinc-
tion based on visibility:

implicit Tasks where neither inputs nor outputs involve floating-point numbers,
but for which the organizer’s preferred solution does involve them (e.g. be-
cause it is much faster or easier than a program based on integer arithmetic
only).

explicit Tasks where inputs or outputs do involve floating-point numbers. It is
relevant to distinguish the three subcases where

• both inputs and outputs include floating-point numbers

• inputs include floating-point numbers, but outputs not

• outputs include floating-point numbers, but inputs not

When using the Euclidean distance, the task BUS TERMINALS of IOI2002 (also see
Euclidean paths above) classifies as implicit, provided that the bounds are chosen
such that floating-point arithmetic suffices. The task of solving a quadratic equation
classifies as explicit, if the coefficients and roots are not specifically restricted to
integers.

A second distinction might be based on the degree of numerical insight needed
to obtain a perfect score:

1Currently, Pascal, C, and C++ are supported.

12



tame Tasks where no numerical difficulties actually arise, that is, competitors can
treat their computer (almost) as if it were an ideal machine.

mild Tasks where some ‘obvious’ ‘standard’ numerical techniques play a role.

wild Tasks requiring a more innovative approach to overcome the numerical diffi-
culties.

Task TRIANGLES at BOI 2002 (BOI2002, 2002) is a nice example of a (nearly)
tame task with integer inputs and explicit fixed-point output. It involves unions of
triangles, whose total area is always of the form n/2, where n is an integer. These
areas can be represented exactly as binary floating-point numbers2, provided the
range and precision are large enough. However, in order to decide what type to
use for accumulating the total area, one needs to know about the details of the
floating-point types available in the programming language of choice. The IEEE
single format does not suffice, because the shape could consist of 2000 disjoint
triangles of area 499 000.5 each. The total area then is 998 001 000.0 ≈ 109 ≈ 230,
which has 27 significant bits, thereby exceeding the 24 bits precision provided by
the single format.

Therefore, the task TRIANGLES is not truly tame. The best approach is not to
view it as a task involving floating-point numbers, and to calculate twice the total
area in (32-bit) integers. The output can be written in two steps using div for the
integer part, and mod for deciding between a trailing ’.0’ and ’.5’.

We conjecture that floating-point numbers can easily be eliminated from tame
tasks without affecting the algorithmic challenge. In the task TRIANGLES above,
the required output could have been twice the total area.

Even in a seemingly tame task, one cannot be completely oblivious of numer-
ical issues, as is shown by task TRIANGLES where the addition of many exact
numbers fails if the wrong floating-point type is used. Furthermore, simple trans-
formations valid in R may fail badly in F. It would be pedagogically wrong to
blame students for applying such transformations. Thus, tame tasks are actually
at least mild, the ‘standard’ technique being that you must know when not to use
floating-point arithmetic and when not to transform certain expressions.

Mild tasks —if they exist— would not make good IOI tasks because they as-
sume specific knowledge, namely about ‘standard’ numerical techniques. This is
counter to the spirit of the olympiad.

The actual task description also poses various dilemmas:

• Does it explicitly state in which class (tame, mild, or wild) the task falls?
Does it help in the selection of appropriate floating-point type (single versus
double)?

• How does it express what is known about the inputs: format details, value
restrictions (such as bounds), and (when applicable) accuracy?

2This would no longer be the case for a generalization to three dimensions, where a coefficient of
1/3 appears.

13



• How does it express what is required of the outputs: format details and ac-
curacy?

For example, when task BUS TERMINALS is posed with Euclidean distance, how
should a competitor know whether to use integers, single precision, or double pre-
cision? Concerning accuracy, we feel that inputs should always be given as exact
values, that is, without error. It is clearly problematic that input values are typi-
cally presented in decimal notation, because after reading them into a floating-point
variable, there usually is already a conversion error. Think of reading in the step
value 0.1 in the Count-down program discussed earlier. To specify the accuracy of
output values, there is a dilemma of bounding the absolute or the relative error.

Another question to be addressed is: How to convince reviewers and leaders
that all allowed inputs are ‘reasonably’ solvable. This requires a careful numerical
error analysis and possibly a lot of experimentation. Even understanding such
an analysis requires a thorough familiarity with numerical mathematics. There is
especially a concern when the input and/or internal calculations involve floating-
point arithmetic, but the output is discrete. As an example, we have seen task BUS

TERMINALS of IOI2002.

5.2 Evaluating the programs

Let us assume that a floating-point task can be formulated in a satisfactory way.
How will submitted programs for that task be evaluated? Since 1994, programs at
the IOI are automatically evaluated based on the program’s behavior for a small set
of test cases.

Especially for mild and wild tasks, there is the problem that it may be very
hard to find good test cases that separate sloppy programs from scientifically well-
designed programs. For example, a program using single-precision floating-point
numbers for task TRIANGLES above, would successfully solve many cases, in spite
of being fundamentally flawed. The organizers would have to construct specific
cases to detect floating-point flaws in such a program. In numerical mathematics,
one requires convincing documentation for such programs. It is almost impossible
to determine the quality of a numerical program by doing black-box tests.

If the task requirements are such that the input values uniquely determine the
output values, then the outputs of a submitted program can be checked by a syn-
tactic comparison to the know correct outputs. Tasks involving floating-point
outputs might not have this property. In that case, the output check must be based
on a semantic comparison. One must now take into account the conversion errors.
Assume that the submitted program computes a floating-point value in variable r
and writes it to a file in decimal notation, which the checker subsequently reads
from that file into a floating-point variable s. Because of the unavoidable inaccu-
racies in the binary-to-decimal and decimal-to-binary, it is very well possible that
r �= s. Try this simple experiment: write sqrt(2) to a file, read the written value
back, and compare it to the original value.

14



When exact outputs cannot be determined (e.g. analytically), there is also a
technical problem: how to check the outputs of submitted programs? Assume that
the accuracy requirement in the task description specifies an absolute error at most
δ > 0. Let x be the exact value of the solution, let y be the approximation produced
by the organizer’s program to be used for evaluation, and let z be the value output
by the submitted program. It is tempting to accept or reject z depending on whether
or not it satisfies:

|y − z| ≤ δ (21)

For the sake of the argument suppose that x < y. Now consider two outputs z1 =
x − δ and z2 = y + δ of two submitted programs. Then (21) will reject z1 and
accept z2, even though |x −z1| ≤ δ and |x −z2| > δ. This is clearly not satisfactory.
One might try to solve this by checking for

|y − z| ≤ δ + δ′ (22)

where δ′ is a bound on the absolute error in value y computed by the organizers.
The disadvantage of this alternative is that it may now accept outputs like z2 that
do not satisfy the accuracy requirement of the task description. This is also not a
desirable situation. The least one can do as an organizer is determine y such that
δ′ � δ. This means that the program to produce such y’s must be designed for a
much tighter error bound than specified in the task description.

Another questions is: How to convince reviewers and leaders that the test cases
and their evaluation are reasonable.

5.3 Preparing the students

Even in the current situation, where the IOI does not involve floating-point tasks,
competitors must be educated to some extent. For instance, they must be strongly
advised to avoid floating-point numbers.

When floating-point tasks would be used, it is necessary to educate competitors
better. For instance, they should at least understand that most mathematical theo-
rems about rational and real numbers fail when converted to floating-point arith-
metic. It may be difficult, however, to decide what standard numerical techniques
to teach them in preparation for mild or wild tasks. This prerequisite knowledge is
not so easy to codify as it may seem.

Furthermore, if you teach them ‘too much’, they may worry too much when
dealing with tame or mild tasks. Assume a tame task is posed without explicitly
stating that it is tame. Then a competitor who knows about mild and wild tasks
may spend some time on analyzing the task description to determine that it is tame.
Tameness need not be obvious at all. On the other hand, a naı̈ve competitor (not
knowing about numerical difficulties), simply goes ahead. This is not fair. The
naı̈ve competitor is in fact bluffing, and this should not be encouraged.

15



Alternatively, the numerically-educated competitor might avoid the analysis
and decide to assume the worst, i.e. that it is a mild or even wild task. Conse-
quently, he applies numerical techniques to guarantee that the outputs satisfy the
requirements (no matter what). This involves extra work (costs time) and may
not be without penalty (slower program using more memory) or risk (more error-
prone). As an example, consider the complications when avoiding floating-point
numbers in task BUS TERMINALS using the Euclidean distance.

Either the tameness must be explicitly stated in the task description, or it must
otherwise be obvious from the task description (if the task is indeed intended as
tame). The reviewers and leaders must also be convinced that it is indeed obviously
a tame task.

5.4 Handling the platform limitations

The IOI involves various platforms3 with various compilers4. The same algorithm
implemented on different platforms may give rise to significantly different outputs
for the same inputs. This is especially a concern when competitors develop their
programs on a platform that differs from the platform used for evaluation. The
evaluation of programs needs to take this into account.

The IEEE Standard for binary floating-point arithmetic is not equally supported
in all languages used at the IOI. There are also the floating-point specifics of the
processors and compilers used in the competition. Often, these offer additional
features outside the IEEE Standard. We will not delve into details here. This may
create quite different challenges depending on the platform. These differences must
be well understood when deciding about the suitability of a competition task.

6 Notes on Literature

Much of the literature on numerical mathematics involves calculus and advanced
linear algebra. It often discusses the numerical solution of problems that are out-
side the scope of pre-university education, such as the approximation of special
functions, matrix inversion, and integration of partial differential equations. We
give a brief overview of accessible literature on numerical mathematics.

For almost any computer science problem it is good to consult the works of
Donald Knuth. Chapter 4 (Arithmetic) of (Knuth, 1997) is worth reading. In par-
ticular, §4.2.1 and §4.2.2 contain many details on floating-point arithmetic and its
accuracy. Unfortunately, treatment of the IEEE standard has been postponed until
the fourth edition.

The official definition of the IEEE standard for binary floating-point arithmetic
is (IEEE, 1985). Good expositions of this standard are available in (Goldberg,
1991; Higham, 1996; Overton, 2001). William Kahan is the academic father of

3Currently, Linux and Windows are offered for development; evaluation is done under Linux.
4At IOI 2002, FreePascal 1.0.6 and GCC 2.95.2 were available

16



this standard. His paper (Kahan, 1981) motivates the need for the standard, and in
(Kahan, 1996) he explains some of the deficiencies in the current support for the
standard, especially the lack of full support in many compilers.

A light introduction to numerical computing is (Overton, 2001). Well known
and very practical are books from the series Numerical Recipes, such as (Press et
al., 1989), though some people have warned for shortcomings. The C version is
available on-line, and we recommend §1.3 about error, accuracy, and stability. A
more theoretical treatment can be found in (Higham, 1996). The first two chapters
contain many inspiring examples. It also has good notes for references through its
extensive bibliography.

Our examples for the sums of square roots (Euclidean paths) are based on
(Goddijn, 2002). Comparing sums of square roots of integers is a known-difficult
problem with applications in computational geometry (O’Rourke, 1981). It is un-
known how much precision is needed to decide which of two such sums is larger,
expressed in terms of the number of square roots and the size of the integers. Ron
Graham constructed an example of two such sums with nine terms each and inte-
gers of seven decimal digits that agree up to 40 decimal digits (Graham, ?).

The quadratic equation is covered in depth in §9.6 of (Sterbenz, 1974). Also
see §1.8 and §1.21 in (Higham, 1996) for more references. Although (Sterbenz,
1974) may seem dated, it is a good text. In §9.2 an algorithm for computing the
average of two floating-point numbers is presented, carefully weighing the merits
of the three formulae

(x + y)/2 = x/2 + y/2 = x + (y − x)/2 (23)

7 Conclusion and Recommendations

We have shown that there are many intricacies surrounding the use of floating-point
numbers. Our examples are not new, but we have selected and adapted them to be
very accessible. It is not true that numerical difficulties occur only in very special
situations which lie outside the domain of pre-university education.

For completeness’ sake, we mention that we have ignored two important areas
of numerical mathematics, related to two additional sources of error:

data uncertainty the error already present in the input values, e.g. when they were
obtained by physical measurement;

truncation error the error introduced by applying an inexact algorithm (that is,
an algorithm which is known to produce an incorrect answer when run on
an ideal machine), with the purpose of obtaining accurate answers in less
time, e.g. by chopping off an infinite series or approximating a function by a
polynomial.

Our recommendations can be summarized as follows:

17



1. Avoid the use of floating-point numbers in computing whenever possible.

To teachers: When designing programming problems, there are plenty of
possibilities without floating-point numbers. In fact, it is a good at-
titude to forbid your students to use floating-point numbers in their
programs, unless specifically required by the assignment, because it is
so hard to reason about floating-point programs.

To students: When solving programming problems whose description does
not involve floating-point numbers, resist the temptation to use them.

2. If you do want to use floating-point numbers, study the literature.

To teachers: When setting a programming problem involving floating-point
numbers, make sure that the constraints are expressed carefully and
that the problem is solvable for all inputs satisfying the constraints.
In particular, you need to provide evidence that your own solution is
acceptable. Make sure that you avoid ill-conditioned problems.

To students: Before resorting to floating-point numbers, convince yourself
that this is really necessary. Then, convince yourself that your program
satisfies all constraints. In particular, check that you have not fallen
into one of the ‘standard’ traps giving rise to an unstable algorithm.

In both cases, some form of error analysis is needed.

These recommendations apply also to competitions: just read ‘organizers’ for
‘teachers’ and ‘competitors’ for ‘students’. However, in view of the complica-
tions brought by floating-point arithmetic, we believe that competitions can best
steer clear of floating-point.

The quote from (Knuth, 1997) that we gave in §1 continues as follows:

“Many serious mathematicians have attempted to analyze a sequence of float-
ing point operations rigorously, but have found the task so formidable that
they have tried to be content with plausibility arguments instead.”

Computations involving floating-point numbers require careful arguments to con-
vince oneself and —more importantly— others of the reliability of the results. The
design and analysis of numerical algorithms has become a specialism of its own.
It is an interesting but difficult field, well beyond the pre-university mathematics
curriculum.

References

BOI2002. TRIANGLES, competition task on Day 1. Baltic Olympiad in Informat-
ics, Lithuania.
http://aldona.mii.lt/pms/olimp/english/boi2002/ (ac-
cessed April 2003).

18



Goddijn, A. “Nee is meestal Nee, maar Ja niet altijd Ja” (in Dutch), Pythagoras,
(41)6:25–29 (August 2002).

Goldberg, D. “What every computer scientist should know about floating-point
arithmetic”, Appendix D in Numerical Computation Guide. Sun Microsystems,
Revision A, May 2000; originally published in ACM Computing Surveys (March
1991).
http://docs.sun.com/source/806-3568/ncg_goldberg.html
(accessed March 2003).

Graham, R. Two sums of nine square roots of integers agreeing up to 40 digits.
http://www.cs.nyu.edu/exact/realexpr/Graham.html
(accessed March 2003).

Higham, N. J. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

Horváth, G and Verhoeff, T. “Finding the Median under IOI Conditions”, Infor-
matics in Education, 1(1):73-92 (2002).

IEEE. ANSI/IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. IEEE,
1985.

IOI, International Olympiad in Informatics, Internet WWW-site, URL:
http://www.IOInformatics.org/ (accessed March 2003).

IOI2002. BUS TERMINALS, competition task on Day 2. International Olympiad
in Informatics, Korea.
http://olympiads.win.tue.nl/ioi/ioi2002/contest/day2/bus/
(accessed March 2003).

Kahan, W. Why do we need a floating-point arithmetic standard? Unpublished
note, February 1981.
http://www.cs.berkeley.edu/˜dbindel/class/cs279/why-
ieee.pdf (accessed March 2003).

Kahan, W. Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-
Point Arithmetic. May 1996.
http://www.cs.berkeley.edu/˜wkahan/ieee754status/IEEE754.PDF
(accessed March 2003).

Knuth, D. E. (1997). The Art of Computer Programming: Seminumerical Algo-
rithms: Vol. 2, 3rd Ed. Addison-Wesley, 1997.

O’Rourke, J. “Advanced Problem 6369”, Amer. Math. Monthly, 88(10):769, 1981.
Also known as Problem 33 in the Open Problems Project.
http://cs.smith.edu/˜orourke/TOPP/ (Accessed March 2003).

Overton, M. L. Numerical Computing with IEEE Floating Point Arithmetic. SIAM,
2001.

19



Press, W. H. et al. Numerical Recipes in Pascal: The Art of Scientific Computing.
Cambridge University Press, 1989.
http://www.nr.com/ (accessed March 2003).

Sterbenz, P. H. Floating-Point Computation. Prentice-Hall, 1974.

20


