The problem of finding the next term of a given sequence of numbers is usually proposed in QI tests. We want to generate the N terms of a sequence from a given codification of the sequence.

Let $S=\left(S_{i}\right)_{i \in \mathbb{N}}$ denote a sequence of real numbers whose i-order term is S_{i}. We codify a constant sequence with the following operator:

$$
S=[n] \quad \text { meaning that } \quad S_{i}=n \quad \forall i \in \mathbb{N},
$$

where $n \in \mathbb{Z}$. We also define the following operators on a given sequence of numbers $S=\left(S_{i}\right)_{i \in \mathbb{N}}$:

$$
\begin{gathered}
V=[m+S] \quad \text { meaning that } \quad V_{i}=\left\{\begin{array}{ll}
m & , i=1 \\
V_{i-1}+S_{i-1} & , i>1
\end{array} ;\right. \\
V=[m * S] \quad \text { meaning that } \quad V_{i}=\left\{\begin{array}{ll}
m * S_{1} & , i=1 \\
V_{i-1} * S_{i} & , i>1
\end{array} ;\right.
\end{gathered}
$$

where $m \in \mathbb{N}$. For example we have the following codifications:

$$
\begin{array}{cc}
{[2+[1]]=2,3,4,5,6 \cdots} & {[1+[2+[1]]]=1,3,6,10,15,21,28,36 \cdots} \\
{[2 *[1+[2+[1]]]]=2,6,36,360,5400,113400 \cdots} & {[2 *[5+[-2]]]=10,30,30,-30,90,-450,3150 \cdots}
\end{array}
$$

Given a codification, the problem is to write the first N terms of the sequence.

Input

The input file contains several test cases. For each of them, the program input is a single line containing the codification, without any space, followed by an integer $N(2 \leq N \leq 50)$.

Output

For each test case, the program output is a single line containing the list of first N terms of the sequence.

Examples

Input	Output	
$[1+[2+[1]]] 5$	1361015	
$[2 *[1+[2+[1]]]] 6$	26363605400113400	

Sample Input

[2+[1]] 3
$[2 *[5+[-2]]] 7$

Sample Output

234
$\begin{array}{lllllll}10 & 30 & 30 & -30 & 90 & -450 & 3150\end{array}$

