The problem of finding the next term of a given sequence of numbers is usually proposed in QI tests. We want to construct a method and a codification that allow us to know all the sequence from the first N terms.

Let $S=\left(S_{i}\right)_{i \in \mathbb{N}}$ denote a sequence of real numbers whose i-order term is S_{i}. We codify a constant sequence with the following operator:

$$
S=[n] \quad \text { meaning that } \quad S_{i}=n \quad \forall i \in \mathbb{N}
$$

where $n \in \mathbb{Z}$. We also define the following operators on a given sequence of numbers $S=\left(S_{i}\right)_{i \in \mathbb{N}}$:

$$
\begin{gathered}
V=[m+S] \quad \text { meaning that } \quad V_{i}= \begin{cases}m & , i=1 \\
V_{i-1}+S_{i-1} & , i>1\end{cases} \\
V=[m * S] \quad \text { meaning that } \quad V_{i}= \begin{cases}m * S_{1} & , i=1 \\
V_{i-1} * S_{i} & , i>1\end{cases}
\end{gathered}
$$

where $m \in \mathbb{N}$. For example we have the following codifications:

$$
\begin{array}{cc}
{[2+[1]]=2,3,4,5,6 \cdots} & {[1+[2+[1]]]=1,3,6,10,15,21,28,36 \cdots} \\
{[2 *[1+[2+[1]]]]=2,6,36,360,5400,113400 \cdots} & {[2 *[5+[-2]]]=10,30,30,-30,90,-450,3150 \cdots}
\end{array}
$$

Given a sequence of N integer numbers and an integer M, the problem is to write the codification that generate the sequence and have at most M operators. We have that $2 \leq N \leq 51$ and $1 \leq M \leq 50$.

Input

The input file contains several test cases. For each of them, the program input is a single line containing M followed by the list of first terms of the sequence. The terms of the given sequence are positive (in the interval $[1,200000]$) or negative integers (in the interval $[-200000,-1]$), and their number N can differ but it is always greater than M.

Output

For each test case, the program output is a single line containing the codification without any space. If there exists no solution with at most M operators, the output must be '[0]'.

Examples

Input			Output	
2	2	3	4	15
3	1	3	6	10
4	15	$[2+[1]]$		
4	2	6	36	360
5400	113400	$[1+[2+[1]]]$		

Sample Input

$\begin{array}{llllllllllllllllll}3 & 10 & 30 & 30 & -30 & 90 & -450 & 3150\end{array}$
226363605400113400

Sample Output

$[2 *[5+[-2]]]$
[0]

