In many newspapers we may find some puzzles to solve, one of those is Su Doku. Given a grid 9×9 with some of entries filled, the objective is to fill in the grid so that every row, every column, and every 3×3 box contains the digits 1 through 9 .

9	6	3	1	7	4	2	5	8
1	7	8	3	2	5	6	4	9
2	5	4	6	8	9	7	3	1
8	2	1	4	3	7	5	9	6
4	9	6	8	5	2	3	1	7
7	3	5	9	6	1	8	2	4
5	8	9	7	1	3	4	6	2
3	1	7	2	4	6	9	8	5
6	4	2	5	9	8	1	7	3

source: http://www.sudoku.com

Input

Input contains several test cases separated by a blank line. Each of them contains an integer n such that $1 \leq n \leq 3$ and a grid $n^{2} \times n^{2}$ with some of the entries filled with digits from 1 to n^{2} (an entrie not filled will have 0). In this case, the objective is to fill in the grid so that every row, every column, and every $n \times n$ box contains the digits 1 through n^{2}.

Output

A solution for the problem. If exists more than one, you should give the lower one assuming a lexicographic order. If there is no solution, you should print 'NO SOLUTION'. For lexicographic comparison you should consider lines in first place. Print a blank line between test cases.

Sample Input

3
060104050
008305600
200000001
800407006
006000300
7000901004
500000002
007206900
040508070

Sample Output

9	6	3	1	7	4	2	5	8
1	7	8	3	2	5	6	4	9
2	5	4	6	8	9	7	3	1
8	2	1	4	3	7	5	9	6
4	9	6	8	5	2	3	1	7
7	3	5	9	6	1	8	2	4
5	8	9	7	1	3	4	6	2
3	1	7	2	4	6	9	8	5
6	4	2	5	9	8	1	7	3

