Let us consider paths in the plane integer lattice $Z \times Z$ consisting only of steps $(1,1)$ and $(1,-1)$ and which never pass below the x-axis. A peak at height k is then defined as a point on the path with coordinate $y=k$ that is immediately preceded by a $(1,1)$ step and immediately followed by a $(1,-1)$ step. The pictures below show two such paths: on the left picture we have 4 peaks (2 peaks at height 2 and 2 peaks at height 3); while on the right picture we have 3 peaks (1 peak at height 1,1 peak at height 2 and 1 peak at height 3).

The problem consists of counting the number of admissible paths starting at $(0,0)$ and ending at $(2 n, 0)$ with exactly r peaks at height k.

Input

The input file contains several test cases, each of them consists of one line with the natural numbers n, r and k which define the problem (first number gives n, second number r, and the last one k). Assume that $1 \leq n<20,0 \leq r<20$, and $1 \leq k<20$.

Output

For each test case, the output is a single integer on a line by itself, answering the problem, being guaranteed to be less than 2^{31}.

Sample Input

312
1032

Sample Output

2
2002

