You live on the planet HomeSweetHome - you are a Homer - and you are planning a holiday trip
with some Homer friends. Your planet belongs to a very "populated" solar system - there are 20000 planets easily reachable with your new MegaSpeed X3 Turbo spaceship!
You have already sketched some possible paths and you are trying to choose one of them. There are ome points that you find important that can make you choose one path over another. Surely everyon
prefers to visit planets where they can breathe (so not to take air masks and oxygen bottles). However, prefers to visit planets where they can breathe (so not to take air masks and oxygen bottles). However
this should be balanced with other characteristics; for example, whether the sights are beautiful, whether you can refuel your spaceship, whether the temperature is Homer-bearable, etc.
You have already gathered the most relevant information about the planets you are interested in siting. You would like to have an easy way to perceive some global characteristics of every possible , in order to make a more knowledgeall choice

> You need a program that, given a path and the characteris you whether some given global properties hold in that path. The relevant characteristics of each planet are represented by propositional symbols; for example
anBreathe, canSee, canWalk, canRefuel, hasFood, niceSights, hasWater, muchcold, etc. The information about each planet is given to you as a set of propositional symbols that are known to be rue for that planet; for example, canSee, hasFood, canWalk characterizes a planet where you are able to see what is around you, that has available food supplies, and where you can walk around freely,
A path is characterized by a number of planets and the properties of each one of them; the order by A path is characterized by a number of planets and the properties of each one of them; the order by which the planets are described is important, insofar as it denotes the order by which they are going
o be visited. The global characteristics of the path that you want to be able to "ask" the computer are expressed in the following language (given in BNF):
Expression ::= AllExpr | SomeExpr | NextExpr | proposition
AllExpr $::=$ ' A ' integer Expression
SomeExpr $:=$ ' s ' integer Expression
NextExpr ::= ' N ' Expression
A proposition cannot start by a digit. Every expression is evaluated for a given planet - the expression Aiprop is true on the current planet if prop is true in all planets that are i or more position ahead of the current one in the path. The expression Siprop is true on the current planet if prop is true in some of the planets that are i or more positions ahead of the current one in the path. The expression Nprop is true on the current planet if prop is true in the planet that follows the current on in the path.
Let us suppose a path $p_{1} p_{2} p_{3} p_{4} p_{5}$. All expressions that we want to evaluate for the path star
0 canBreathe - all planets in the path are "breathable" (in the example, this expression is true for he path if case that the proposition canBreathe is true in all $p_{1}, p_{2}, p_{3}, p_{4}$ and p planets)

A3hasFood - from the third planet onwards, not including that third one, all planets in the path have
available food supplies (in the example, this expression is true for the path if it is the case that available food supplies (in the example, this exp

SOmuchCold - there is at least one planet in the path which is too much cold (in the example, this rue if at least one of the planets in the path has the characteristic muchCold)
S2A1hasWater - from the second planet onwards, not including that second one, there is some plane which all the ones that follow it in the path have water (in the example, this expression is rue if A1hasWater is true in at least one of the p_{3}, p_{4} and p_{5} planets; the expression A1hasWate is true in p_{3}, for example, if hasWater is true in all planets from p_{4} onwards, that is, in p_{4} and in $\left.p_{5}\right)$
AOSIhasWater - in all planets we can expect that there is some planet in the rest of the path where here is water available (in the example, this expression is true for the path if S1haswater is true all planets of the path; the expression S1hasWater is true in p_{2}, for example, if hasWater tue in some of the p_{3}, p_{4} and p_{5} planets)

AONhasFood - the successor planet of all planets in the path has food (in the example, this expression
is true for the path if it is the case that the proposition NhasFood is true in all $p_{1}, p_{2}, p_{3}, p_{4}$ and planets: the expression whasFood is true in p_{1} for example it the proposition hasFood is tru in p_{2})
Note that whenever it is not possible to evaluate an expression in a path, for example when the urrent planet does not exist, the expression evaluates to true. In the example, the expressio NhasFood is true in p_{5} because there is no Next planet following p_{5} in the path.

Input
The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line.

The first line of input contains an integer $P(0<P \leq 150)$ that denotes the number of planets in the path.
The fo

The following P lines contain the propositions (separated by spaces) corresponding to the properties hat each of the planets in the path has. Fach proposition is a string of up to 10 characters (spaces are not allowed). There is a maximum of 30 propositions per planet.
The following line contains an integer $Q(0<Q<50)$ which denotes the number of expressions hat follow. The following Q lines contain an expression each. These expressions are written in the bove specified language. The integers that are part of AllExpr and SomeExpr expressions may tale Output
For each test case, the output must follow the description below. The outputs of tw The output has Q lines separated by a blank line
The output has Q lines, each one containing the word 'yes' or 'no' depending on the validity of
Sample Input

