
You live on the planet HomeSweetHome — you are a Homer — and you are planning a holiday trip
with some Homer friends. Your planet belongs to a very “populated” solar system — there are 20000
planets easily reachable with your new MegaSpeed X3 Turbo spaceship!

You have already sketched some possible paths and you are trying to choose one of them. There are
some points that you find important that can make you choose one path over another. Surely everyone
prefers to visit planets where they can breathe (so not to take air masks and oxygen bottles). However,
this should be balanced with other characteristics; for example, whether the sights are beautiful, whether
you can refuel your spaceship, whether the temperature is Homer-bearable, etc.

You have already gathered the most relevant information about the planets you are interested in
visiting. You would like to have an easy way to perceive some global characteristics of every possible
path, in order to make a more knowledgeable choice.

You need a program that, given a path and the characteristics of every planet along that path, tells
you whether some given global properties hold in that path.

The relevant characteristics of each planet are represented by propositional symbols; for example
canBreathe, canSee, canWalk, canRefuel, hasFood, niceSights, hasWater, muchCold, etc. The
information about each planet is given to you as a set of propositional symbols that are known to be
true for that planet; for example, canSee, hasFood, canWalk characterizes a planet where you are
able to see what is around you, that has available food supplies, and where you can walk around freely.

A path is characterized by a number of planets and the properties of each one of them; the order by
which the planets are described is important, insofar as it denotes the order by which they are going
to be visited. The global characteristics of the path that you want to be able to “ask” the computer
are expressed in the following language (given in BNF):

Expression ::= AllExpr | SomeExpr | NextExpr | proposition

AllExpr ::= ‘A’ integer Expression

SomeExpr ::= ‘S’ integer Expression

NextExpr ::= ‘N’ Expression

A proposition cannot start by a digit. Every expression is evaluated for a given planet — the
current planet — within a path. The initial current planet is always the first planet in the path. The
expression Aiprop is true on the current planet if prop is true in all planets that are i or more positions
ahead of the current one in the path. The expression Siprop is true on the current planet if prop is
true in some of the planets that are i or more positions ahead of the current one in the path. The
expression Nprop is true on the current planet if prop is true in the planet that follows the current one
in the path.

Let us suppose a path p1 p2 p3 p4 p5. All expressions that we want to evaluate for the path start
being evaluated in the first planet — p1 — which is the initial current planet. Some examples follow:

A0canBreathe — all planets in the path are ”breathable” (in the example, this expression is true for
the path if it is the case that the proposition canBreathe is true in all p1, p2, p3, p4 and p5
planets)

A3hasFood — from the third planet onwards, not including that third one, all planets in the path have
available food supplies (in the example, this expression is true for the path if it is the case that
the proposition hasFood is true in p4 and in p5)

S0muchCold — there is at least one planet in the path which is too much cold (in the example, this is
true if at least one of the planets in the path has the characteristic muchCold)

S2A1hasWater — from the second planet onwards, not including that second one, there is some planet
for which all the ones that follow it in the path have water (in the example, this expression is
true if A1hasWater is true in at least one of the p3, p4 and p5 planets; the expression A1hasWater

is true in p3, for example, if hasWater is true in all planets from p4 onwards, that is, in p4 and in
p5)

A0S1hasWater — in all planets we can expect that there is some planet in the rest of the path where
there is water available (in the example, this expression is true for the path if S1hasWater is true
in all planets of the path; the expression S1hasWater is true in p2, for example, if hasWater is
true in some of the p3, p4 and p5 planets)

A0NhasFood — the successor planet of all planets in the path has food (in the example, this expression
is true for the path if it is the case that the proposition NhasFood is true in all p1, p2, p3, p4 and
p5 planets; the expression NhasFood is true in p1, for example, it the proposition hasFood is true
in p2)

Note that whenever it is not possible to evaluate an expression in a path, for example when the
current planet does not exist, the expression evaluates to true. In the example, the expression
NhasFood is true in p5 because there is no Next planet following p5 in the path.

Input

The input will contain several test cases, each of them as described below. Consecutive
test cases are separated by a single blank line.

The first line of input contains an integer P (0 < P ≤ 150) that denotes the number of planets in
the path.

The following P lines contain the propositions (separated by spaces) corresponding to the properties
that each of the planets in the path has. Each proposition is a string of up to 10 characters (spaces are
not allowed). There is a maximum of 30 propositions per planet.

The following line contains an integer Q (0 < Q < 50) which denotes the number of expressions
that follow. The following Q lines contain an expression each. These expressions are written in the
above specified language. The integers that are part of AllExpr and SomeExpr expressions may take
values in the interval [0, 150[(the upper limit is the maximum number of planets given above).

Output

For each test case, the output must follow the description below. The outputs of two
consecutive cases will be separated by a blank line.

The output has Q lines, each one containing the word ‘yes’ or ‘no’ depending on the validity of
each of the Q expressions for the path given in the input.

Sample Input

4

canBreathe hasFood hasWater

canBreathe hasWater

hasWater muchCold

hasFood muchCold hasWater

24

A0canBreathe

A3hasFood

S0muchCold

S2A1hasWater

A0S1hasWater

A0NhasFood

A0hasWater

A1canBreathe

A3canBreathe

A2muchCold

A0S0muchCold

A0S3muchCold

A0S2NmuchCold

S122muchCold

NNA1canBreathe

NNA1hasFood

S2A0hasWater

S1A0muchCold

A1S1muchCold

A1S1canBreathe

A2S3muchCold

A0NS2muchCold

A0NS2canBreathe

A1S0A0NhasWater

Sample Output

no

yes

yes

yes

yes

no

yes

no

no

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

no

yes

yes

no

yes

