Let the sum of the squares of the digits of a positive integer s_{0} be represented by s_{1}. In a similar way, let the sum of the squares of the digits of s_{1} be represented by s_{2}, and so on. If $s_{i}=1$ for some $i \geq 1$, then the original integer s_{0} is said to be happy. For example, starting with 7 gives the sequence

$$
\mathbf{7}, \mathbf{4 9}(=7 \wedge 2), \mathbf{9 7}(=4 \wedge 2+9 \wedge 2), \mathbf{1 3 0}(=9 \wedge 2+7 \wedge 2), \mathbf{1 0}(=1 \wedge 2+3 \wedge 2), \mathbf{1}(=1 \wedge 2)
$$

so 7 is a happy number.
The first few happy numbers are $1,7,10,13,19,23,28,31,32,44,49,68,70,79,82,86,91,94$, $97,100, \ldots$ The number of iterations i required for these to reach 1 are, respectively, $1,6,2,3,5,4,4$, $3,4,5,5,3, \ldots$

A number that is not happy is called unhappy. Once it is known whether a number is happy (unhappy), then any number in the sequence $s_{1}, s_{2}, s_{3}, \ldots$ will also be happy (unhappy). Unhappy numbers have eventually periodic sequences of s_{i} which do not reach 1 (e.g., 4, 16, 37, 58, 89, 145, 42, $20,4, \ldots$).

Any permutation of the digits of a happy (unhappy) number must also be happy (unhappy). This follows from the fact that addition is commutative. Moreover, the product of a happy (unhappy) number by any power of ten is a happy (unhappy) number. Example: 58 is an unhappy number; then, so are $85,580,850,508,805,5800,5080,5008,8050,8500$, and so on.

Decide which numbers, in a given closed interval, are happy numbers.

Input

The input has n lines each of them corresponding to test case. Every line contains two positive integers between 1 and 99999 each; the first integer, L, is the low limit of the closed interval; the second one, H, is the high limit $(L \leq H)$.

Output

The output is composed of the happy numbers that lie in the interval $[L, H]$, together with the number of iterations required for the corresponding sequences of squares to reach 1.

There must be a line for each happy number containing the happy number followed by a space and the number of iterations required for the sequence of squares to reach 1.

Print a blank line between two consecutive test cases.
Note: The definition of happy numbers is from MathWorld - http://mathworld.wolfram.com/

Sample Input

528
233250

Sample Output

76
102
133
195
234
284

