In the decimal system an autobiographical number is a natural number with no more than 10 digits,

$$
N=d_{0} d_{1} \ldots d_{r-1} \quad(1 \leq r \leq 10)
$$

such that $d_{0}$ is the number of 0 's in $N, d_{1}$ is the number of 1 's in $N, d_{2}$ is the number of 2 's in $N$, and so on.

The notion of autobiographical number can be generalized to any base $b \geq 2$.
Let $A=\left[s_{0}, s_{1}, \ldots, s_{b-1}\right]$ be an alphabet, whose symbols $s_{0}, s_{1}, \ldots, s_{b-1}$ correspond to the values $0,1, \ldots, b-1$, respectively: that is, value $\left(s_{i}\right)=i$. Then, an autobiographical number in base $b$ (under the alphabet $A$ ) is a natural number with no more than $b$ symbols,

$$
N=d_{0} d_{1} \ldots d_{r-1} \quad(1 \leq r \leq b)
$$

such that value $\left(d_{0}\right)$ is the number of $s_{0}$ 's in $N$, value $\left(d_{1}\right)$ is the number of $s_{1}$ 's in $N, \ldots$, and value $\left(d_{r-1}\right)$ is the number of $s_{r-1}$ 's in $N$.

For example:

- 42101000 is an autobiographical number in base 10 , under the alphabet $[0,1,2,3,4,5,6,7$, 8,9 ], because it has four 0's, two 1's, one 2 , zero 3's, one 4, zero 5's, zero 6's, and zero 7's;
- A2100000001000 is an autobiographical number in base 16 , under the alphabet $[0,1,2,3,4,5$, $6,7,8,9, A, B, C, D, E, F]$. There are value $(A)=100$ 's, two 1's, etc.

Given an alphabet $A$, with $b$ symbols, determine all autobiographical numbers in base $b$ under $A$.

## Input

The first line contains a positive integer $L(1 \leq L \leq 50)$, which is the number of subsequent lines.
Each of the following $L$ lines contains an alphabet.
An alphabet is a contiguous sequence of $b$ distinct symbols, where $2 \leq b \leq 100$.
A symbol is a printable character.

## Output

For each input alphabet, the output is the sequence of all autobiographical numbers in increasing order. Each number is written on a different line.

The outputs of two consecutive alphabets are separated by a blank line.

## Sample Input

```
2
```

0123
abcdefg

## Sample Output

1210
2020
bcba
caca
cbcaa
dcbbaaa

