$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{o} .
$$

be a $n$-th degree polynomial with coefficients $a_{o}, \ldots, a_{n}$. If $z$ is a root of $P(x)$, that is, $P(z)=0$, then the first degree polynomial $(x-z)$ divides $P(x)$, that is, $P(x)=(x-z) Q(x)$, where $Q(x)$ is a polynomial with a degree less than $n$. In the same way, if $w$ is a root of $Q(x)$, then $Q(x)=(x-w) R(x)$, and, obviously, $P(x)=(x-z)(x-w) R(x)$, which means that $w$ is a root of $P(x)$, also. This means that the more roots of $P(x)$ we know, the easier it is to know the ones we don't know, because we are obtaining polynomials of decreasing degrees. When, finally, we obtain a 2 nd degree polynomial, $a x^{2}+b x+c$, as a result of the division, we have a very simple way of finding its two roots: we use the quadratic formula

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

to compute them.
How can we find $Q(x)$, such that $P(x)=(x-z) Q(x)$, having $P(x)$ and one of its roots, $z$ ? That is, how can we divide $P(x)$ by $(x-z)$ ? We describe here the Ruffini rule, a simple process for dividing polynomials by 1st degree polynomials of the form $(x-\quad z)$ :

- On a first line we write the coefficients of $P(x)$ (see figure I).
- On a second line we write the root of the polynomial $(x-z)$, which is $z$ (see figure II).
- On the third line we start by writing the first coefficient of $P(x)$ which is 3 (see figure III).
- Then we write on the second line, right below the second coefficient of $P(x)$, the value -6 which is the product of $z$ (which is -2 ) by the previous value on the third line (which is 3 ). Then we write on the third line, right below that -6 product value, the sum of that -6 value with the second coefficient of $P(x)$ (which is 6 ), which gives the value zero (see figure IV).
- We repeat the previous step for the remaining coefficients of $P(x)$ (see figure V ).

At the end, we obtain on the third line the coefficients of the resulting polynomial $-Q(x)$ - and the remainder of the division (in this case

is zero because we are dividing $P(x)$ by one of its roots). In figure V we see the coefficients of $Q(x)$. So, $Q(x)=x^{3}+0 x^{2}+21 x+18$. The remainder of the division is zero, as expected.

Your task consists of writing a program that, given the coefficients of a $n$th degree polynomial, and $n-2$ roots of that polynomial, finds the other two roots. Assume that all roots are real.

## Input

The input is one text file (standard input) that has, in the first line, the number $k$ of polynomials that are to be processed. The next $3 * k$ lines contain the information about the $k$ polynomials. The first of each set of three lines contains the value $n$ of the polynomial degree; the second of each set of three lines contains $n+1$ values separated by spaces (the coefficients of the polynomial), and the third of each set of three lines contains $n-2$ values which represent $n-2$ roots of the polynomial. You know that there can be some repeated roots; the third line of each set of three lines contains exactly $n-2$ root values, even if some of them are repeated.

## Output

The output file must have $2 * k$ lines, each pair containing each of the two unknown roots of the polynomial. Each pair of roots must be in decreasing order. These values must be rounded to one decimal place.

## Sample Input

3
3
3
$2-15 \quad 36-27$
3
6

$1-202$
3
12.31 -0.3
-1.5

## Sample Output

3.0
1.5
3.0
-1.0
0.2
-1.0

