We consider sequences formed from the addition of terms of a given sequence. Let $\left\{a_{n}\right\}, n=1,2,3, \ldots$, be an arbitrary sequence of integer numbers; d a positive integer. We construct another sequence $\left\{b_{m}\right\}$, $m=1,2,3, \ldots$, by defining b_{m} as consisting of $n \times d$ occurrences of the term a_{n} :

$$
b_{1}=\underbrace{a_{1}, \ldots, a_{1}}_{d \text { occurrences of } a_{1}}, b_{2}=\underbrace{a_{2}, \ldots, a_{2}}_{2 d \text { occurrences of } a_{2}}, b_{3}=\underbrace{a_{3}, \ldots, a_{3}}_{3 d \text { occurrences of } a_{3}}, \cdots
$$

For example, if $a_{n}=n$, and $d=1$, then the resulting sequence $\left\{b_{m}\right\}$ is:

$$
\underbrace{1}_{b_{1}}, \underbrace{2,2}_{b_{2}}, \underbrace{3,3,3}_{b_{3}}, \underbrace{4,4,4,4}_{b_{4}}, \cdots
$$

Given a_{n} and d we want to obtain the corresponding k-th integer in the sequence $\left\{b_{m}\right\}$. For example, with $a_{n}=n$ and $d=1$ we have 3 for $k=6$; we have 4 for $k=7$. With $a_{n}=n$ and $d=2$, we have 2 for $k=6$; we have 3 for $k=7$.

Input

The first line of input contains $C(0<C<100)$, the number of test cases that follows.
Each of the C test cases consists of three lines:

1. The first line represents a_{n} - a polynomial in n of degree i with non-negative integer coefficients in increasing order of the power:

$$
a_{n}=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{i} n^{i}
$$

where $c_{j} \in \mathbb{N}_{0}, j=0, \ldots, i$. This polynomial a_{n} is codified by its degree i followed by the coefficients $c_{j}, j=0, \ldots, i$. All the numbers are separated by a single space.
2. The second line is the positive integer d.
3. The third line is the positive integer k.

It is assumed that the polynomial a_{n} is a polynomial of degree less or equal than $20(1 \leq i \leq 20)$ with non-negative integer coefficients less or equal than $10000\left(0 \leq c_{j} \leq 10000, j=0, \ldots, i\right) ; 1 \leq d \leq 100000$; $1 \leq k \leq 1000000$.

Output

The output is a sequence of lines, one for each test case. Each of these lines contains the k-th integer in the sequence $\left\{b_{m}\right\}$ for the corresponding test case. This value is less or equal than $2^{63}-1$.

Sample Input

```
2
4 0 0 0 23
25
100
1 O 1
1
6
```


Sample Output

