In a large organization, everyone knows a lot of colleagues. However, friendship relations are kept with only a few of them, to whom news are told.

Suppose that whenever an employee knows of a piece of news, he tells it to all his friends on the following day. So, on the first day, the source of the information tells it to his friends; on the second day, the source's friends tell it to their friends; on the third day, the friends of the source's friends' tell it to their friends; and so on.

The goal is to determine:

- the maximum daily boom size, which is the largest number of employees that, on a single day, hear the piece of news for the first time; and
- the first boom day, which is the first day on which the maximum daily boom size occurs.

Write a program that, given the friendship relations between the employees and the source of a piece of news, computes the maximum daily boom size and the first boom day of that information spreading process.

Input

The first line of the input contains the number E of employees $(1 \leq E \leq 2500)$. Employees are numbered from 0 to $E-1$.

Each of the following E lines specifies the set of friends of an employee's (from employee 0 to employee $E-1$). A set of friends contains the number of friends $N(0 \leq N<15)$, followed by N distinct integers representing the employee's friends. All integers are separated by a single space.

The next line contains an integer $T(1 \leq T<60)$, which is the number of test cases.
Each of the following T lines contains an employee, which represents the (unique) source of the piece of news in the test case.

Output

The output consists of T lines, one for each test case.
If no employee (but the source) hears the piece of news, the output line contains the integer ' 0 '.
Otherwise, the output line contains two integers, M and D, separated by a single space, where M is the maximum daily boom size and D is the first boom day.

Sample Input

6

12
34
045
14
0
202
3
0
4
5

Sample Output

```
32
0
```

