One of the first formulas we were taught in high school mathematics is $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Later on, we learned that this is a special case of the expansion $(a+b)^{n}$, in which the coefficient of $a^{k} b^{n-k}$ is the number of combinations of n things taken k at a time. We never learned (at least I never $\operatorname{did} \ldots$) what happens if instead of a binomial $a+b$ we have a multinomial $a+b+c+\ldots+x$.

Your task is to write a program that, given a multinomial $m=a_{1}+a_{2}+\ldots+a_{k}, k \geq 1$, computes the coefficient of a given term in the expansion of $m^{n}, n \geq 1$. The given term is specified by a sequence of k integer numbers $z_{1}, z_{2}, \ldots, z_{k}$, representing the powers of $a_{1}, a_{2}, \ldots, a_{k}$ in the expansion. Note that $z_{1}+z_{2}+\ldots+z_{k}=n$. For example, the coefficient of $a b^{2} c$ in $(a+b+c)^{4}$ is 12 .

Input

The input file contains several test cases, each of them with three lines.
The first line contains a number representing the value of n. The second line contains a number representing the value of k. The third line contains k numbers, representing the values of $z_{1}, z_{2}, \ldots, z_{k}$. All test cases are such that $k \leq 100$ and the computed coefficient is less than 2^{31}.

Output

For each test case, write to the output one line.
This line contains one integer number representing the value of the coefficient of the term $a_{1}^{z_{1}} \cdot a_{2}^{z_{2}}$. $\ldots \cdot a_{k}^{z_{k}}$ in the expansion of $\left(a_{1}+a_{2}+\ldots+a_{k}\right)^{n}$.

Sample Input

4
3
121
7
4
2302

Sample Output

12
210

