As we know, finding a rational close to a given rational is straightforward. The minimal distance between two distinct integers is 1 . By contrast, there is no minimal distance between two distinct rationals. A straightforward method for finding a rational close to a given rational a / b is based on the following construction. For every $m>0$ one has $a / b=(a m) /(b m)$, and the neighbors $(a m \pm 1) /(b m)$ lie at distance $1 /(b m)$ from the given rational. So, by choosing m to be sufficiently large, one can make the distance to be as small as we please.

Given a rational a / b and an upper bound n for the distance, the problem consists to find the rational c / d such that:
(i) $a / b<c / d$;
(ii) the distance between the rationals a / b and c / d is smaller or equal than n;
(iii) the denominator d is as small as possible.

Input

The input will contain several test cases, each of them consisting of two lines.
The first line of the input contains two positive integers a and b which define the rational number a / b. The integers a and b are assumed to be in the interval $[1,100000]$. The second line contain a positive real number $n, 0.00000001 \leq n \leq 0.1$, which gives the maximum distance allowed.

Output

For each test case, write to the output, on a line by itself, the two positive integers c and d which solve the problem.

Sample Input

96145
0.0001

Sample Output

4974

