
 signs are intended to point in the direction of the shop; , hov
ever, Panchitas smagnetic needle has a problem and only yive
four directions: North. South, East and Weest. . Thus, the sigh four directions: North, South, East and West. Thus, the signs
only point to the shop with a certain approximation In the
desert, besides Panchita's shop and the signs, there is nothing more. Panchita is happy with her signs: people transversing the
desert usually make a deviation from their original route to desert usualy make a deviation from their original route to
follow the signs up to the shop, and she makes money. Her life vould be perfect if there were no windstorms in the desert,
Che problem is that the wind makes the signs rotate, as if The problem is that the wind makes the signs rotate, as if
they were weathercocks. After each storm, Panchita has to
 Simulating Panchita's Set-Up
We may simulate a simplification of Panchita's environment using a grid-based representation as We may simulate a simplification of Panchita's environment using a grid-based representation as
the one in Figure . In this simulation, Panchita's shop is represented by a single dark position and
sien by two neighour dhark positions. signs by two neighbour dark positions.

Tacos Panchita \triangle Pivot position \square Movable position
Directions are d
North-West is 135°
North-West is 135°).
orts sign rotates around one of its dark positions: we call it the sign's pivot position. This one
corresponds to the side of the sign with an arrow shape (in Figure 1 , the left side). That's why pivot Thus in represented in Figure 2 with triangles. Thus, a pivot position remains fixed
moves is called moouble (see Figure 3).

pivot position
Figura 3: Signs rotate around pivot positions
This representation obviously lacks lot of detail. Sign direction, for instance, can only be represented
multiples of 450. Therefore, we will assume that wind may only leave signs pointing in directions in multiples of 45°. Theref.
which are multiples of 45°. Given a partial map of the desert after a windstorm, simulate the result of changing the signs'
directions to torth, South, East or West, so sthat all them point approximately to Tocoss Panchita.
Figure 4 illustrates a hypoothetical scenario.
 The intended resslt is
moving movalbe positions.
To deternin a
To determinin a corincted sign direction, you must first compute the direction α from Tacos Panchita to the sign's pivot position. β, the new direction from the pivot to the respective movable position, will
be the closest multiple of 90°, i.e., β will be the multiple of 90° such that $\alpha \in\left[\beta-45^{\circ}, \beta+45^{\circ}(\right.$ (note be the closest multipie
the closed left interval).
Figure 5 illustratest this calculation: signs with pivots in area A must point to West, those with
pivots in area B must point to South, and so on.

Tbe foring as be take

- when correcting a sign's direction, onl)
in the windstorm, there are no two objects "touching" each other
- in the given partial map, every sign occupies exactly two positions; after correcting the signss
directions, this may mot be true, as the movable part of the sign may be out of the map and will
not be represented

Input
The input will contain several test cases, each
test cases are separated by a single blank line.
 Next h lines: $n p_{1} p_{2} \ldots p_{n}$ here each $p_{\text {i }}$ is the x coordinate of a pivot position in the current line. Lines are presented in descending
der of their y coordinates. In each line, pivot coordinates are presented in ascending order Movable positions are not included in the input as they are nesented in asceded to solving orde proble Output
or each test case, the output must follow the description below. The outputs of two Output should represent the map with the blank line.
umber of lines as follow
First line: x y wh
First line: x y w
here x and y are the
ere x and y are the (always positive
vidth and the height of the given map
Next h lines: $m x_{1} x_{2}$
ere $m x_{1} x_{2} \ldots x^{\prime}$. here each x_{j} is the x coordinate of a movable position in the current line. Lines are presented in
eescending order of their y coordinates. In each line, movable coordinates are presented in ascending der.
Pivot positions are not included in the output as they are kept unchanged.

Sample Input
376
6
16
16
12
1
16
12
12
Sample Output
3376
12
0

