The factorial function, $n!=1 \cdot 2 \cdot \ldots \cdot n$, has many interesting properties. In this problem, we want to determine the maximum number of integer terms (excluding 1) that can be used to express $n!$. For example:

$$
8!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8=2 \cdot 3 \cdot 2 \cdot 2 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 2 \cdot 2 \cdot 2=2^{7} \cdot 3^{2} \cdot 5 \cdot 7
$$

By inspection, it is clear that the maximum number of terms (excluding 1) that can be multiplied together to produce 8 ! is 11 .

Input

The input for your program consists of a series of test cases on separate lines, ended by end-of-file. Each line contains one number, $n, 2 \leq n \leq 1000000$.

Output

For each test case, print the maximum number of factors (excluding 1) that can be multiplied together to produce n !. Put the output from each test case on a separate line, starting in the first column.

Sample Input

2
1000000
1996
5
8
123456
Sample Output
1
3626619
5957
5
11
426566

