In the late XIXth century the German mathematician George Cantor argued that the set of positive fractions \mathbb{Q}^{+}is equipotent to the set of positive integers \mathbb{N}, meaning that they are both infinite, but of the same class. To justify this, he exhibited a mapping from \mathbb{N} to \mathbb{Q}^{+}that is onto. This mapping is just traversal of the $\mathbb{N} \times \mathbb{N}$ plane that covers all the pairs:

The first fractions in the Cantor mapping are:

$$
\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{2}{2}, \frac{1}{3}, \ldots
$$

Write a program that finds the i-th Cantor fraction following the mapping outlined above.

Input

The inputs consists of several lines with a positive integer number i each one.

Output

The output consists of a line per input case, that contains the i-th fraction, with numerator and denominator separed by a slash '/'. The fraction should not be in the most simple form.

Sample Input

6

Sample Output

$1 / 3$

