
In Operating Systems a special resource-allocation graph algorithm can be used to detect whether
there is any deadlock in the system. A resource-allocation graph is a directed graph consisting of two
different types of nodes P = P1, P2, . . . , Pn, the set consisting of all active processes in the system, and
R = R1, R2, . . . , Rm, the set consisting of all resource types in the system.

A directed edge from process Pi to resource Rj is denoted by Pi −→ Rj and means that process
Pi requested an instance resource type Rj , and is currently waiting for that resource. A directed edge
from resource type Rj to process Pi, is denoted by Rj −→ Pi and means that an instance of resource
type Rj has been allocated to process Pi.

The following figure illustrates a resource-allocation graph where processes are denoted by circles
and resources by squares. Notice that if there is a circular wait among the processes, then it implies
that a deadlock has occurred.

Given a resource allocation graph in which each resource type has exactly one instance, your job is
to determine whether there is a deadlock in the system. In case a deadlock exists, you must also show
the sequence of processes and resources involved.

Input

The input begins with a single positive integer on a line by itself indicating the number
of the cases following, each of them as described below. This line is followed by a blank
line, and there is also a blank line between two consecutive inputs.

We will assume that processes are named by capital letters and resources by small letters, so we
limit to 26 the number of processes and/or resources. Therefore, the first line of input consists of three
numbers N , M and E, respectively, the number of processes, the number of resources and the number
of edges. The edges are given in the following lines as pairs of letters linked by a ‘-’ character. Edges
are separated by spaces or newlines.

Output

For each test case, the output must follow the description below. The outputs of two
consecutive cases will be separated by a blank line.

The output must be ‘NO’ if no deadlock is detected. In case a deadlock is detected, the output must
be ‘YES’ followed by the sequence or sequences of circular waits detected, one per line. If more then
one sequence is found, they should all be output in increasing order of their length.

Sample Input

1

2 2 4

A-b B-a

a-A b-B

Sample Output

YES

A-b-B-a-A


