Before being an ubiquous communications gadget, a mobile was just a structure made of strings and wires suspending colourfull things. This kind of mobile is usually found hanging over cradles of small babies.

The figure illustrates a simple mobile. It is just a wire, suspended by a string, with an object on each side. It can
 also be seen as a kind of lever with the fulcrum on the point where the string ties the wire. From the lever principle we know that to balance a simple mobile the product of the weight of the objects by their distance to the fulcrum must be equal. That is $W_{l} \times D_{l}=W_{r} \times D_{r}$ where D_{l} is the left distance, D_{r} is the right distance, W_{l} is the left weight and W_{r} is the right weight.

In a more complex mobile the object may be replaced by a sub-mobile, as shown in the next figure. In this case it is not so straightforward to check if the mobile is balanced so we need you to write a program that, given a description of a mobile as input, checks whether the mobile is in equilibrium or not.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input is composed of several lines, each containing 4 integers separated by a single space. The 4 integers represent the distances of each object to the fulcrum and their weights, in the format: $W_{l} D_{l} W_{r} D_{r}$

If W_{l} or W_{r} is zero then there is a sub-mobile hanging from that end and the following lines define the the sub-mobile. In this case we compute the weight of the sub-mobile as the sum of weights of all its objects, disregarding the weight of the wires and strings. If both W_{l} and W_{r} are zero then the following lines define two sub-mobiles: first the left then the right one.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Write 'YES' if the mobile is in equilibrium, write ' NO ' otherwise.

Sample Input

1

0204
0301
1111
2442
1632

Sample Output

