A contour of points is represented on a two dimensional (2D) grid as illustrated in figure 1. The points *', '\#,',-' and space. In figure 1 this character is ' x '. All the other points of the grid are represented by spaces. The contour is connected, i.e. any two points on the contour can be reached from one another by traveling vertically, horizontally and diagonally. Moreover, it is considered that a contour can clos a single non empty zone of grid points.

01		
1।	xxxxxxxxxx	
21	xxxx	xx
31	x	x
41	x x	xxxxxxx
51	xxxxxxxx	xx
61	x x	xxxxxxx
71	x	x
81	xxxx	xx
91	xxxxxxx	

Figure 1: A contour on a 2D grid
The character ' $\#$ ' represents the colour used to paint the contour as illustrated in figure 3 . The paint is added on one side of the contour in such a way that each contour point of the painted side ha
at least one ' $\#$ ' neighbour horizontally or vertically as shown in figure 2:

		\#\#\#\#
\#\#\#	x\#\#\#	xxxx\#
xxx	xxxx	X\#
flat zone	concave corner	convex corner

contour can be painted either from inside or from outside. The painting side is specified by the the character '*' inside or outside the contour as shown in figure 3. Notice that the star is removed from the grid once the painting is done.

xxxxxxxxxx		xxxxxxxxxx interior		
xx	${ }_{\text {xx }}$	xxxx\#\#\#\#\#\#\#xx		
		x\#\#\# \#	\#\#x	
x x	xxxxxxx	x\#\#\#\#\#\#X\#	\#xxxxxxx	
xxxxxxxx	xx	xxxxxxxx\#	\#\#\#\#\#\#\#xx	
x X	xxxxxxx	x\#\#\#\#\#\#\#\#	\#xxxxxxx	
x	x	x\#\#\#	\#\#X	
$\operatorname{xxxx}_{\text {xxxxxxxxx }} \mathrm{xx}$		xxxx\#\#\#\#\#\#\#x		
		xxxxxxxxxx		
xxxxxxxxxx		\#xxxxxxxxxx\#\# painting		
xxxx xx		\#xxxx	xx\#	
x	x	\#X	x\#\#\#\#\#\#	
x x	xxxxxxx	\#X	$\underset{\text { xxxxxxy\#\# }}{\text { x }}$	
xxxxxxxx ${ }^{\text {xx }}$		\#xxxxxxxx		
x	xxxxxxx	\#X ${ }_{\text {\# }}$	xxxxxxx\#\#	
	x		X\#\#\#\#\#\#	
$\underset{\text { xxxxxxxxxx }}{\operatorname{xxxx}_{2}^{\prime}}$		\#xxxx xx\#		
xxxxxxxxxx		\#XXXXXXXXXX\#\# \#\#\#\#\#\#\#\#\#\#		
before painting		after painting		

Figure 3. Painting a closed contor
Your problem is to write a program which: reads from a text file a number n and n grids, each grid ntaining a single contour and a single star, paints each grid according to the position of the star an outputs the painted grids to a text file
urrounded by free grid points (spaces).

Input
The first line of the input text file contains the number of grids to be painted. The next lines of the file contain the grids. The lines which represent a grid are terminated by a separation line full of underscores (' - '). There are at most 30 lines and at most 80 characters in a line for each grid. Th lines can be of different length.

Output

The standard output file contains the grids with the painted contours and with the stars removed. Each grid is output in the same format it has been read from the input file, including the separation line. It follows an example of the input and the output of the program for a single simple contour

Sample Input

Sample Output
xxxxxxx
X\#\#\#\#\#X
xYYYYXX
xxxxxxx

