A company decides to simulate on computer the process of manufacturing its own goods. In order to do that, it makes the following observations:

1. The whole process can be splitted into several steps; between them there are some dependencies This can be represented by a diagram (graph), which we suppose to be only one for all goods produced by company as in figure 1 ;

2. First step designates the start of manufacturing process;there is only one first step, denoted by the number 1 ;
3. There are not steps isolated or outside the process (every step is linked by a path with the first step)
4. Some steps are total dependants; so, we claim that the step i is total dependant of step j if ever path in the fabrication process cannot arrive to i without was passing through j.

So, all steps are total dependants of step 1
Example: In the process shown by the figure 1 the step 4 is total dependant of step 3, steps 5,6 and 7 are total dependants of 4 (hence of 3), but step 3 is not total dependant of step 2 .

The Computing Center Dept. of company notes that whole manufacturing process is easier to be ontrolled if it would be structured by a tree, as follows

- All steps of manufacturing process are nodes of the tree;
- Each node ensures total dependence of all its own descendants

The tree associated to the diagram from figure 1 is shown in figure 2 .

Your task is to write a program that builds this dependence tree
Input
The input file contains several input data sets. An input data set has the following format
n - number of steps of manufacturing process ($2 \leq n \leq 99$)
$\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots\end{array}$
$\begin{array}{llll}a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}$
where $a_{i j}=1$ if step j follows directly step i in the process diagram, otherwise $a_{i} j=0$.

Output

At output, the program must write $n-1$ lines for every input data set; each line has the format ij
数 ff and only if ($i_{1}<i_{2}$) or ($i_{1}=i_{2}$ and $j_{1}<j_{2}$).

10 0 0
 12 13
 34 45
 46
 78
 89
 810

Sample Input

011000000

$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
0001000100
0010000011
100000000 000001000

Sample Output

