
A grammar of a language is a set of rules which show the way syntactically correct sentences are build in
the language. If the number of sentences is finite then these rules can be specified as a directed acyclic
AND-OR graph, as that illustrated in figure 1. We assume, by convention, that the AND nodes are
marked by ‘*’, the OR nodes are marked by ‘|’ and the leaf nodes are labeled by any printable character
different than ‘*’ and ‘|’. Each node of the graph designates a sequence of sentences. Generally, such
a sequence can contain identical members. We say that a node can generate the sequence of sentences
it designates as follows:

• A leaf generates a single sentence which is the label of the node. For example the node labeled
‘a’ in figure 1 generates the sentence ‘a’.

• An OR node generates the sequence of sentences which is the union of the sequences generated
by its successors. For instance, the sole OR node in figure 1 generates the sequence of sentences
‘a’, ‘b’. The order of generation (i.e. the order of sentences in the sequence) is the order of the
node successors.

• An AND node generates sentences computed as the concatenation of the sentences generated by
its successors. If there are n successors the concatenation uses n sentences, each generated by a
successor. In addition, the concatenation is performed left to right according to the order of the
successors. For example, the AND node from figure 1 generates the sequence of sentences ‘ab’,
‘bb’. This sequence is computed by appending the sentence generated by the leaf node ‘b’ to
each sentence generated by the OR node. Generally, if i0, i1, . . . , in is the compound index of the
i-th sentence generated by an AND node with n successors, where ik is the index of a sentence
corresponding to the k-th successor, then the sequence of sentences generated by the AND node
is in lexicographic ascending order of the compound indexes of its members.

Figure 1: An AND-OR graph

The sentences generated by the root node of the graph are
the sentences of the language whose syntax is described by
the graph. The graph from figure 1 describes a language with
two sentences ‘ab’ and ‘bb’.

The sentences designated by a node of the graph can be
generated all at once, or incrementally, a number of sentences
at a time. The term incrementally means that the sentences
generated at a given time are the next sentences which follow
from those previously generated. For example, an incremental
generator working for the root node of the graph in figure 1
will be able to generate on its first call the sentence ‘ab’ and
on its second call the sentence ‘bb’. By convention, if the
sentences the node are exhausted the generator restarts with
the first sentence of the node. In the example above for the third call the generator will produce ‘ab’.

Your problem is to write a program which behaves as an incremental sentence generator. The
program reads a graph, as explained below, and then, one at a time, an integer k. Let |k| be the
absolute value of k. The program generates the next |k| sentences of the root node of the graph, prints
k and, if k > 0, prints the generated sentences. The program continues with a new set of data, if any,
when it reads a null value.

Input

The integer on the first line is the number of data sets. Each data set contains a graph description and
a sequence of integers which control the sentence generation process for the graph. The graph is read
as follows:

1. The first line of the graph data contains a positive integer, say n, which is the number of graph
nodes.

2. The next n input lines describe the nodes, a line for each node of the graph. The nodes are
numbered from 0 to n − 1. The root node is always numbered 0. For a leaf node the input line
has the format

node number node symbol

where node number is a positive integer and node symbol is a character. If the node is an AND
or an OR node the input line is

node number node mark number of successors succ0 . . . succm

where node number is a positive integer, node mark is the character ‘*’ for an AND node or the
character ‘|’ for an OR node, the number of successors is a strictly positive integer, and succi,
i = 0,m (m = number of successors−1), is a positive integer designating the number of a graph
node which is a successor of the currently described node.

All the elements of an input line start from the beginning of the line and are separated by single
spaces. Moreover, it is known that a graph can have at most 50 nodes, each node with at most 10
successors, and the length of a sentence can be at most 80 characters. In the example below, the first
line declares a single data set, the next 5 lines specify the graph from figure 1 and the remaining 3 lines
control the sentence generation process.

Output

For each graph, the output of the program is as follows: for each integer k (|k| ≤ 1000), which is read
after a graph description, the program outputs k and, if k > 0 the next k sentences of the root node,
one sentence on a line. Each sentence starts at the beginning of the line and there are no spaces between
the sentence characters. If k < 0 the generated sentences are not printed. The total number of k for
each graph is less than or equal to 100. Bear in mind that the total number of sentences for each graph
may exceed 263.

Sample Input

1

4

0 * 2 1 3

1 | 2 2 3

2 a

3 b

-1

3

0

Sample Output

-1

3

bb

ab

bb

0

