A few definitions first:

- **Definition 1** A graph G = (V, E) is called "dense" if for each pair of non-adjacent vertices u and v, $d(u) + d(v) \ge n$ where n = |V| and $d(\bullet)$ denotes the degree of the vertex \bullet .
- **Definition 2** A "Hamiltonian cycle" on G is a sequence of vertices $(v_{i_1}v_{i_2} \dots v_{i_n}v_{i_1})$ such that $v_{i_l} \neq v_{i_h}$ for all $l \neq h$ and $\{v_{i_l}, v_{i_{l+1}}\}$ is an edge of G.

The problem is: write a program that, given a dense indirect graph G = (V; E) as input, determines whether G admits a Hamiltonian cycle on G and outputs that cycle, if there is one, or outputs 'N' if there is none.

Input

The input file contains several descriptions of graphs (each one ending with a '%'), in the form:

 $\begin{array}{c} n_1 \\ u_{i_1} \ u_{j_1} \\ u_{i_2} \ u_{j_2} \\ \cdots \\ & \\ n_2 \\ u_{i_1} \ u_{j_1} \\ u_{i_2} \ u_{j_2} \\ \cdots \\ & \\ & \\ \end{array}$

where n_i is the number of vertices $(0 < n_i \le 256)$ and $u_{i_h} u_{i_l}$ are integers between 1 and n_i indicating that there exists an edge between vertex u_{i_h} and u_{i_l}

Output

For each test case, output a line that must contain the sequence of vertices that form a Hamiltonian cycle in the form:

 $u_{i_1} u_{i_2} u_{i_3} \ldots$

or containing:

N

Sample Input

- 4 1 2 23 2 4 34 3 1 % 6 1 2 13 1 6 3 2 34 5 2 54 65 64
- %

Sample Output

1 2 4 3 1 1 3 2 5 4 6 1