A young schoolboy would like to calculate the sum

$$
S_{k}(n)=\sum_{i=1}^{n} i^{k}
$$

for some fixed natural k and different natural n. He observed that calculating i^{k} for all $i(1 \leq i \leq n)$ and summing up results is a too slow way to do it, because the number of required arithmetical operations increases as n increases. Fortunately, there is another method which takes only a constant number of operations regardless of n. It is possible to show that the sum $S_{k}(n)$ is equal to some polynomial of degree $k+1$ in the variable n with rational coefficients, i.e.,

$$
S_{k}(n)=\frac{1}{M}\left(a_{k+1} n^{k+1}+a_{k} n^{k}+\ldots+a_{1} n+a_{0}\right)
$$

for some integer numbers $M, a_{k+1}, a_{k}, \ldots, a_{1}, a_{0}$.
We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. $M, a_{k+1}, a_{k}, \ldots, a_{1}, a_{0}$) will be unique for the given k. You have to write a program to find such set of coefficients to help the schoolboy make his calculations quicker.

Input

The input file contains several datasets, each of them containing a single integer $k(0 \leq k \leq 20)$.
The first line of the input contains the number of datasets, and it's followed by a blank line. There's also a blank line between datasets.

Output

For each dataset, write integer numbers $M, a_{k+1}, a_{k}, \ldots, a_{1}, a_{0}$ to the output file in the given order. Numbers should be separated by one space. Remember that you should write the answer with the smallest positive M possible.

Print a blank line between consecutive outputs.

Sample input

1

2

Sample Output

