Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of R^{n} where R is a real number ($0.0<R<99.999$) and n is an integer such that $0<n \leq 25$.

Input

The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6 , and the n value will be in columns 8 and 9 .

Output

The output will consist of one line for each line of input giving the exact value of R^{n}. Leading zeros and insignificant trailing zeros should be suppressed in the output.

Sample Input

$$
95.12312
$$

$$
0.432120
$$

$$
5.1234 \quad 15
$$

$$
6.7592 \quad 9
$$

$$
98.99910
$$

$$
1.010012
$$

Sample Output

548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201

