
Any one-to-one mapping f of the alphabet to itself can be used to encode text by replacing each
occurence of letter c with f(c).

Example: One such mapping could be the mapping of a letter to three positions beyond the letter
in the alphabet: For example, a->d, b->e, c->f, d->g, ... etc.

natural language: The car is blue.
encoded message: Wkh fdu lv eoxh.

The mapping that defines the encoding is one-to-one. That is, two different letters do not map to
the same letter of the alphabet (a->x and t->x is impossible).

Input
The input file contains two messages separated by a blank line. We will refer to them as ‘KNOWN’
and ‘ENCODED’ messages. This file contains an encoded message.

Output
You are to write a program that decodes the message in the file according to the following guidelines.

1. The input message KNOWN contains a natural language text that is written by the same person
that wrote the encoded message in ENCODED. It is to be assumed that the person uses letters of
the alphabet with the same relative frequency from document to document. Read KNOWN and
count the number of times each letter of the alphabet occurs. Order the letters of the alphabet
in such a way that the first in the ordering is the most frequently used letter in KNOWN and the
last in the list is the least frequently used letter in KNOWN. Break all ties for letters that occur
at the same frequency alphabetically. That is, if both p and w appeared in KNOWN exactly 12
times each, then p would precede w in the ordered list.

2. Read ENCODED and count the number of times each encoded letter of the alphabet occurs.
Order the letters in such a way that the first in the ordering is the most frequently used letter in
ENCODED and the last in the list is the least frequently used letter in ENCODED. Again, break
all ties alphabetically.

3. The process for counting the frequencies with which letters occur is to be case insensitive. That
is, the appearance of the letter W followed by w would account for two occurences of that letter.

4. The counting process is only to count letters of the alphabet, not other characters.

5. The program is to assume that the most frequently used letter in KNOWN maps to the most
frequently used letter in ENCODED; the second most frequently used letter in KNOWN maps to
the second most frequently used letter in ENCODED; ... etc.

6. Your program is to use knowledge of the mapping described in specification 5 to decode the
message and put the decoded message in the output file.

7. Even though the counting process was to be case insensitive, the deconding process is to be case
sensitive. That is, encoded capital letters are to be decoded into capital letters, and encoded
lower case letters are to be decoded into lower case letters.

8. All non-alphabetic characters found in ENCODED are to pass unchanged and appear in the same
relative position in the output file as in the input message ENCODED. For example, this message
may contain blank lines which must appear also in the output file.

Sample Input
The car is blue.

Wkh fdu lv eoxh.

Sample Output
The car is blue.


