A Strange Tree (S-tree) over the variable set $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a binary tree representing a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Each path of the S-tree begins at the root node and consists of $n+1$ nodes. Each of the S-tree's nodes has a depth, which is the amount of nodes between itself and the root (so the root has depth 0). The nodes with depth less than n are called non-terminal nodes. All non-terminal nodes have two children: the right child and the left child. Each non-terminal node is marked with some variable x_{i} from the variable set X_{n}. All non-terminal nodes with the same depth are marked with the same variable, and non-terminal nodes with different depth are marked with different variables. So, there is a unique variable $x_{i_{1}}$ corresponding to the root, a unique variable $x_{i_{2}}$ corresponding to the nodes with depth 1 , and so on. The sequence of the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}$ is called the variable ordering. The nodes having depth n are called terminal nodes. They have no children and are marked with either 0 or 1 . Note that the variable ordering and the distribution of 0 's and 1's on terminal nodes are sufficient to completely describe an S-tree

As stated earlier, each S-tree represents a Boolean function f. If you have an S-tree and values for the variables $x_{1}, x_{2}, \ldots, x_{n}$, then it is quite simple to find out what $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is: start with the root. Now repeat the following: if the node you are at is labelled with a variable x_{i}, then depending on whether the value of the variable is 1 or 0 , you go its right or left child, respectively. Once you reach a terminal node, its label gives the value of the function.

Figure 1: S-trees for the function $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$
On the picture, two S-trees representing the same Boolean function, $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge\left(x_{2} \vee x_{3}\right)$, are shown. For the left tree, the variable ordering is x_{1}, x_{2}, x_{3}, and for the right tree it is x_{3}, x_{1}, x_{2}.

The values of the variables $x_{1}, x_{2}, \ldots, x_{n}$, are given as a Variable Values Assignment (VVA)

$$
\left(x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{n}=b_{n}\right)
$$

with $b_{1}, b_{2}, \ldots, b_{n} \in\{0,1\}$. For instance, $\left(x_{1}=1, x_{2}=1, x_{3}=0\right)$ would be a valid VVA for $n=3$, resulting for the sample function above in the value $f(1,1,0)=1 \wedge(1 \vee 0)=1$. The corresponding paths are shown bold in the picture.

Your task is to write a program which takes an S-tree and some VVAs and computes $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as described above.

Input

The input file contains the description of several S-trees with associated VVAs which you have to process. Each description begins with a line containing a single integer $n, 1 \leq n \leq 7$, the depth of the S-tree. This is followed by a line describing the variable ordering of the S-tree. The format of that line is $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$. (There will be exactly n different space-separated strings). So, for $n=3$ and the variable ordering x_{3}, x_{1}, x_{2}, this line would look as follows:
x3 x1 x2
In the next line the distribution of 0's and 1's over the terminal nodes is given. There will be exactly 2^{n} characters (each of which can be ' 0 ' or ' 1 '), followed by the new-line character. The characters are given in the order in which they appear in the S-tree, the first character corresponds to the leftmost terminal node of the S -tree, the last one to its rightmost terminal node.

The next line contains a single integer m, the number of VVAs, followed by m lines describing them. Each of the m lines contains exactly n characters (each of which can be ' 0 ' or ' 1 '), followed by a new-line character. Regardless of the variable ordering of the S-tree, the first character always describes the value of x_{1}, the second character describes the value of x_{2}, and so on. So, the line

110
corresponds to the VVA $\left(x_{1}=1, x_{2}=1, x_{3}=0\right)$.
The input is terminated by a test case starting with $n=0$. This test case should not be processed.

Output

For each S-tree, output the line 'S-Tree \#j:', where j is the number of the S-tree. Then print a line that contains the value of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for each of the given m VVAs, where f is the function defined by the S-tree.

Output a blank line after each test case.

Sample Input

3
x1 x2 x3
00000111
4
000
000
110
111
110
3
x3 x1 x2
00010011
4
000
010
111
110
0

Sample Output

S-Tree \#1:
0011
S-Tree \#2:
0011

