
781 Optimisation

A company decides to simulate on computer the process of manufacturing its own goods. In order to
do that, it makes the following observations:

1. The whole process can be splitted into several steps; between them there are some dependencies.
This can be represented by a diagram (graph), which we suppose to be only one for all goods
produced by company as in figure 1;

2. First step designates the start of manufacturing process;there is only one first step, denoted by
the number 1;

3. There are not steps isolated or outside the process (every step is linked by a path with the first
step);

4. Some steps are total dependants; so, we claim that the step i is total dependant of step j if every
path in the fabrication process cannot arrive to i without was passing through j.

So, all steps are total dependants of step 1.

Example: In the process shown by the figure 1 the step 4 is total dependant of step 3, steps 5,6 and
7 are total dependants of 4 (hence of 3), but step 3 is not total dependant of step 2.

The Computing Center Dept. of company notes that whole manufacturing process is easier to be
controlled if it would be structured by a tree, as follows:



Universidad de Valladolid OJ: 781 – Optimisation 2/3

• All steps of manufacturing process are nodes of the tree;

• Each node ensures total dependence of all its own descendants;

The tree associated to the diagram from figure 1 is shown in figure 2.

Your task is to write a program that builds this dependence tree.

Input

The input file contains several input data sets. An input data set has the following format:

n - number of steps of manufacturing process (2 ≤ n ≤ 99);

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

where aij = 1 if step j follows directly step i in the process diagram, otherwise aij = 0.

Output

At output, the program must write n− 1 lines for every input data set; each line has the format:

i j

with the meaning that node j is a direct descendant of node i in the tree. The pair (i1j1) follows (i2j2)
if and only if (i1 < i2) or (i1 = i2 and j1 < j2).



Universidad de Valladolid OJ: 781 – Optimisation 3/3

Sample Input

10

0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

Sample Output

1 2

1 3

3 4

4 5

4 6

4 7

7 8

8 9

8 10


