Given a positive integer $\Delta(0<\Delta<10000)$, which is called the overhead, and $M(0<M \leq 200)$ straight line segments in a two-dimensional plane with the following properties:

1. each line segment has a height, which is a positive integer;
2. two line segments only intersect with each other on endpoints;
3. no two line segments are overlapped.

Each line has a unique number between 1 and M. Each endpoint in the plane has a unique number between 1 and $N(0<N \leq 400)$, where N is the total number of endpoints. A line segment is represented by its two endpoints $\left(n_{i}, n_{j}\right)$. Let height (L) be the height of a line segment L.

A path is a sequence of line segments $L_{C_{1}}, L_{C 2}, \ldots, L_{C_{k}}$, such that $k>1, C_{i} \neq C_{j} \quad \forall i \neq j, L_{C_{i}}$ intersects with $L_{C_{i+1}}$ for all $1 \leq i<k$, one endpoint of $L_{C_{1}}$ does not intersect with any other line segments, and one endpoint of $L_{C_{k}}$ does not intersect with any other line segments. The cost between two intersection line segments i $L_{C_{i}}$ and $L_{C_{i+1}}$ is

$$
\left|\operatorname{height}\left(L_{C_{i}}\right)-\operatorname{height}\left(L_{C_{i+1}}\right)\right|
$$

That is, for example you can image, the number of stairs that one has to climb (up or down) by walking from $L_{C_{i}}$ to $L_{C_{i+1}}$. The cost of a path $L_{C_{1}}, L_{C 2}, \ldots, L_{C_{k}}$ is

$$
k \cdot \Delta+\sum_{i=1}^{k-1} \operatorname{cost}\left(L_{C_{i}}, L_{C_{i+1}}\right)
$$

In the example shown in Fig. $1, \Delta=25, M=8$, and $N=9$. Then $\operatorname{cost}\left(L_{2}, L_{3}\right)=$ 1 and $\operatorname{cost}\left(L_{1}, L_{6}\right)=8$. L_{1}, L_{4}, L_{5} is not a path. There are three paths in the plane. The cost for the path $L_{1}, L_{6}, L_{7}, L_{8}$ is 109. The cost for the path $L_{1}, L_{4}, L_{5}, L_{8}$ is 131. The cost for the path L_{2}, L_{3} is 51. Hence L_{2}, L_{3} is the path with the least cost.

You may also assume there is at least one path in the plane. Write a program to find the least cost among all paths.

Input

The first line is l, the number of test cases. The first

Fig. 1: An example of 8 straight lines with 9 endpoints. three lines of test case $\# i$ are M_{i}, N_{i} and Δ_{i} which are the numbers of line segments and endpoints, and the overhead, respectively. The following M_{i} lines each contains the two endpoints of each line segment, starting from L_{1} to $L_{M_{i}}$, and its height.

Each line segment is represented by three integers, separated by blanks.

Output

Contains l lines. The i-th line contains the least cost of all paths in the i-th test case.

Sample Input

Sample Output

