
Rendering realistic images of imaginary environments or objects is an in-
teresting topic in computer graphics. One of the most popular methods
for this purpose is ray-tracing.

To render images using ray-tracing, one computes (traces) the path that
rays of light entering a scene will take. We ask you to write a program
that computes such paths in a restricted environment.

For simplicity, we will consider only two-dimensional scenes. All objects
in the scene are totally reflective (mirror) spheres. When a ray of light hits
such a sphere, it is reflected such that the angle of the incoming ray and
the leaving ray against the tangent are the same:

The figure on the right shows a typical path that a ray of
light may take in such a scene.

Your task is to write a program, that given a scene descrip-
tion and a ray entering the scene, determines which spheres
are hit by the ray.

Input
The input consists of a series of scene descriptions. Each
description starts with a line containing the number n (n ≤
25) of spheres in the scene. The following n lines contain
three integers xi, yi, ri each, where (xi, yi) is the center, and
ri > 0 is the radius of the i-th sphere. Following this is a line
containing four integers x, y, dx, dy, which describe the ray. The ray originates from the point (x, y)
and initially points in the direction (dx, dy). At least one of dx and dy will be non-zero.

The spheres will be disjoint and non-touching. The ray will not start within a sphere, and never
touch a sphere tangentially.

A test case starting with n = 0 terminates the input. This case should not be processed.

Output
For each scene first output the number of the scene. Then print the numbers of the spheres that the
ray hits in its first ten deflections (the numbering of spheres is according to their order in the input).

If the ray hits at most ten spheres (and then heads towards infinity), print inf after the last sphere
it hits. If the ray hits more than 10 spheres, print three points (...) after the tenth sphere.

Output a blank line after each test case.

Sample Input
3
3 3 2
7 7 1
8 1 1
3 8 1 -4
2
0 0 1
5 0 2
2 0 1 0
0

Sample Output
Scene 1
1 2 1 3 inf

Scene 2
2 1 2 1 2 1 2 1 2 1 ...


