The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile ' x '; the object of the puzzle is to arrange the tiles so that they are ordered as:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	x

where the only legal operation is to exchange ' x ' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
5	6	7	8	5	6	7	8	5	6	7	8	5	6	7	8
9	x	10	12	9	10	x	12	9	10	11	12	9	10	11	12
13	14	11	15	13	14	11	15	13	14	x	15	13	14	15	x
r->															

The letters in the previous row indicate which neighbor of the ' x ' tile is swapped with the ' x ' tile at each step; legal values are ' r ', I ',' u ' and ' d ', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing ' x ' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.

Input

The first line of the input is an integer N, then a blank line followed by N datasets. There is a blank line between datasets.

In each dataset, you will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers ' 1 ' to ' 8 ', plus ' x '.

For example, this puzzle
123
$\times 46$
758
is described by this list:
123×46758

Output

For each dataset, you will print to standard output either the word 'unsolvable', if the puzzle has no solution, or a string consisting entirely of the letters ' r ', ' I ', ' u ' and ' d ' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Print a blank line between datasets.

Sample Input

1
23415×768

Sample Output

ullddrurdllurdruldr

