In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define $d(n)$ to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, $d(75)=75+7+5=87$. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers $n, d(n)$, $d(d(n)), d(d(d(n))), \ldots$ For example, if you start with 33 , the next number is $33+3+3=39$, the next is $39+3+9=51$, the next is $51+5+1=57$, and so you generate the sequence

$$
33,39,51,57,69,84,96,111,114,120,123,129,141, \ldots
$$

The number n is called a generator of $d(n)$. In the sequence above, 33 is a generator of 39,39 is a generator of 51,51 is a generator of 57 , and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self - number. There are thirteen self-numbers less than 100: $1,3,5,7,9,20,31,42,53,64,75,86$, and 97.

Write a program to output all positive self-numbers less than or equal 1000000 in increasing order, one per line.

Sample Output

1
3
5
7
9
20
31
42
53
64
| <-- a lot more numbers

