
Presumably everybody knows how a knight can move on a chessboard. One may agree that its move-
ments are quite monotonous, so to make them more entertaining let’s define a so called “dynamic
knight”. A dynamic knight can perform many different movements that may belong to three types:

• type K: two fields forward (in any direction) and one sidewise — like “regular knight”;

• type B: two fields diagonally — more like a bishop;

• type T: sort of teleportation to a field which is a mirror reflection with respect to any of two axes
of symmetry of the chessboard (we take into consideration only axes of symmetry parallel to sides
of the chessboard);

The picture on the right shows all possible movements
of a knight divided into three types K, B and T. Obviously
our knight, like the “regular” one cannot move outside the
chessboard.

For a dynamic knight it is not relevant whether the fields
between the starting field and ending one are occupied or
not (again like for the “regular knight”). It only matters
whether the ending field is empty. Then the movement can
be performed. There has to be a restriction among so many
capabilities of a dynamic knight. It cannot perform the same
sort of movements consecutively (just not to fall into routine).

Having redefined a chess knight, why not to redefine a
chessboard? Our chessboard will be a square of size 2N×2N .
N can be any integer number from the range of 3..20. There can be several obstacles of any shape on
a chessboard so a knight cannot stop on these defected fields.

Your task is to write a program which can calculate the minimal number of movements to get the
knight from one given field to another one. It may be assumed that the first movement can be of any
type.

Input
First line contains the number N , being the size of a chessboard. The second one contains field
coordinates separated by space character, which is a knight current standpoint. Upper left-hand size
corner has coordinates (1, 1). Third line contains destination field for the knight. Consecutive lines
contain obstacle coordinates and the line with coordinates (0, 0) ends the obstacle description. Input
can contain several sets of data.

Input’s end is shown as a line defining chessboard’s size as 0.

Output
It is supposed to be fairly simple — one line with a single number being the calculated minimal number
of movements.

Sample Input
3
1 1
1 1
2 2
0 0
10
1 1
20 20
20 1
1 20
3 1
3 2
3 3
2 3
1 3
0 0
10
2 1
18 12
2 2
5 6
7 2
8 3
9 4
1 15
7 12
8 13
9 11
11 9
12 4
11 3
9 5
2 7
3 8
6 5
0 0
3
1 1
5 4
2 2
2 4
2 5
3 1
3 2
3 3
3 6
4 2
4 3
4 5
5 1
5 3
5 5
6 1
6 4
6 5
6 6
0 0
0

Sample Output
Result : 0
Solution doesn't exist
Result : 6
Result : 4


