Webster defines prime as:
prime (prim) n. [ME, fr. MF, fem. of prin first, \mathbf{L} primus; akin to \mathbf{L} prior $] \mathbf{1}$: first in time: original $2 \mathbf{a}$: having no factor except itself and one $\langle 3$ is a \sim number $\rangle \mathbf{b}$: having no common factor except one $\langle 12$ and 25 are relatively $\sim\rangle \mathbf{3}$ a: first in rank, authority or significance: principal b: having the highest quality or value $\langle\sim$ television time \rangle [from Webster's New Collegiate Dictionary]

The most relevant definition for this problem is 2 a : An integer $g>1$ is said to be prime if and only if its only positive divisors are itself and one (otherwise it is said to be composite). For example, the number 21 is composite; the number 23 is prime. Note that the decompositon of a positive number g into its prime factors, i.e.,

$$
g=f_{1} \times f_{2} \times \cdots \times f_{n}
$$

is unique if we assert that $f_{i}>1$ for all i and $f_{i} \leq f_{j}$ for $i<j$.
One interesting class of prime numbers are the so-called Mersenne primes which are of the form $2^{p}-1$. Euler proved that $2^{31}-1$ is prime in 1772 - all without the aid of a computer.

Input

The input will consist of a sequence of numbers. Each line of input will contain one number g in the range $-2^{31}<g<2^{31}$, but different of -1 and 1 . The end of input will be indicated by an input line having a value of zero.

Output

For each line of input, your program should print a line of output consisting of the input number and its prime factors. For an input number $g>0, g=f_{1} \times f_{2} \times \cdots \times f_{n}$, where each f_{i} is a prime number greater than unity (with $f_{i} \leq f_{j}$ for $i<j$), the format of the output line should be

$$
g=f_{1} \times f_{2} \times \ldots \times f_{n}
$$

When $g<0$, if $|g|=f_{1} \times f_{2} \times \cdots \times f_{n}$, the format of the output line should be

Sample Input

-190
-191
-192
-193
-194
195
196
197
198
199
200
0

Sample Output

```
-190 = -1 x 2 x 5 x 19
-191 = -1 x 191
-192 = -1 x 2 x 2 x 2 x 2 x 2 x 2 x 3
-193 = -1 x 193
-194 = -1 x 2 x 97
195 = 3 x 5 x 13
196 = 2 x 2 x 7 x 7
197 = 197
198 = 2 x 3 x 3 x 11
199=199
200=2 x 2 x 2 x 5 x 5
```

