Write a program that can solve linear equations with one variable.

Input

The input file will contain a number of equations, each one on a separate line. All equations are strings of less than 100 characters which strictly adhere to the following grammar (given in EBNF):

Equation	:= Expression '=' Expression		
Expression	$:=\operatorname{Term}\{(1+1$ \| '-') Term \}		
Term	$:=$ Factor \{ '*' Factor \}		
Factor	:= Number \| 'x'	'(' Expression ')	
Number	:= Digit \| Digit Number		
Digit	:= '0' \| '1'	...	'9'

Although the grammar would allow to construct non-linear equations like " $x * x=25$ ", we guarantee that all equations occuring in the input file will be linear in x. We further guarantee that all subexpressions of an equation will be linear in x too. That means, there won't be test cases like $x * x-$ $x * x+x=0$ which is a linear equation but contains non-linear sub-expressions $(x * x)$.

Note that all numbers occuring in the input are non-negative integers, while the solution for x is a real number.

Output

For each test case, print a line saying 'Equation $\# i$ ' (where i is the number of the test case) and a line with one of the following answers:

- If the equation has no solution, print 'No solution.'
- If the equation has infinitely many solutions, print 'Infinitely many solutions.'
- If the equation has exactly one solution, print ' $\mathrm{x}=$ solution' where solution is replaced by the appropriate real number (printed to six decimals).

Print a blank line after each test case, but the last one.

Sample Input

```
x+x+x=10
4*x+2=19
3*x=3*x+1+2+3
(42-6*7)*x=2*5-10
```


Sample Output

```
Equation #1
x = 3.333333
Equation #2
x = 4.250000
Equation #3
No solution.
Equation #4
Infinitely many solutions.
```

