Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

- $\operatorname{ADD}(x)$: put element x into Black Box;
- GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box.

Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non-descending.

Example

Let us examine a possible sequence of 11 transactions:

\mathbf{N}	Transaction	\mathbf{i}	Black Box contents after transaction (elements are arranged by non-descending)	Answer
1	$\operatorname{ADD}(3)$	0	3	
2	GET	1	$\mathbf{3}$	3
3	$\operatorname{ADD}(1)$	1	1,3	
4	GET	2	$1, \mathbf{3}$	3
5	$\operatorname{ADD}(-4)$	2	$-4,1,3$	
6	$\operatorname{ADD}(2)$	2	$-4,1,2,3$	
7	$\operatorname{ADD}(8)$	2	$-4,1,2,3,8$	
8	$\operatorname{ADD}(-1000)$	2	$-1000,-4,1,2,3,8$	
9	GET	3	$-1000,-4, \mathbf{1}, 2,3,8$	1
10	GET	4	$-1000,-4,1, \mathbf{2}, 3,8$	2
11	$\operatorname{ADD}(2)$	4	$-1000,-4,1,2,2,3,8$	

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. $A(1), A(2), \ldots, A(M)$: a sequence of elements which are being included into Black Box. A values are integers not exceeding 2000000000 by their absolute value, $M \leq 30000$. For the Example we have $A=(3,1,-4,2,8,-1000,2)$.
2. $u(1), u(2), \ldots, u(N)$: a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have $u=(1,2,6,6)$.

The Black Box algorithm supposes that natural number sequence $u(1), u(2), \ldots, u(N)$ is sorted in non-descending order, $N \leq M$ and for each $p(1 \leq p \leq N)$ an inequality $p \leq u(p) \leq M$ is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our $A(1), A(2), \ldots, A(u(p))$ sequence.

Input

The first line of the input is an integer K, then a blank line followed by K datasets. There is a blank line between datasets.

Input for each dataset contains (in given order): $M, N, A(1), A(2), \ldots, A(M), u(1), u(2), \ldots, u(N)$. All numbers are divided by spaces and (or) carriage return characters.

Output

For each dataset, write to the output Black Box answers sequence for a given sequence of transactions. Write only a number per line in the output.

Print a blank line between datasets.

Sample Input

1
74
$31-428-10002$
1266

Sample Output

