Banks, always trying to increase their profit, asked their computer experts to come up with a system that can read bank cheques; this would make the processing of cheques cheaper. One of their ideas was to use optical character recognition (ocr) to recognize bank accounts printed using 7 line-segments.

Once a cheque has been scanned, some image processing software would convert the horizontal and vertical bars to ASCII bars ' \mid ' and underscores '_.'

The ASCII 7 -segment versions of the ten digits look like this:

A bank account has a 9-digit account number with a checksum. For a valid account number, the following equation holds: $\left(d_{1}+2 \times d_{2}+3 \times d_{3}+\cdots+9 \times d_{9}\right) \bmod 11=0$. Digits are numbered from right to left like this: $d_{9} d_{8} d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1}$.

Unfortunately, the scanner sometimes makes mistakes: some line-segments may be missing. Your task is to write a program that deduces the original number, assuming that:

- when the input represents a valid account number, it is the original number;
- at most one digit is garbled;
- the scanned image contains no extra segments.

For example, the following input

used to be "123456789".

Input

The input file starts with a line with one integer specifying the number of account numbers that have to be processed. Each account number occupies 3 lines of 27 characters.

Output

For each test case, the output contains one line with 9 digits if the correct account number can be determined, the string 'failure' if no solutions were found and 'ambiguous' if more than one solution was found.

Sample Input

4
$\left.\left.\right|_{-} ^{-}{ }_{-}^{-}\left|I_{-}\right| I_{-}^{-}\right|_{-} ^{-}-\left.\left|I_{-}^{-}\right|\right|_{-} ^{-} \mid$

I_| $1_{-}^{-}\left|1^{-}\right| 1^{-}\left|1_{-}^{-}{ }^{-}\right|{ }_{-}^{-} \mid 1_{-}^{-}$

___ $\left.\left._{-}^{-}\right|_{-}\left|I_{-}^{-}\right| I_{-}^{-}\left|I_{-}^{-}\right| I_{-}^{-}\left|I_{-}^{-}\right|\right|_{-} ^{-}\left|I_{-}^{-}\right|$
|_||_||_||_|I_||_||_||_||
।_ $\left|I_{-}^{-}\right| I_{-}^{-}\left|I_{-}^{-}\right| I_{-}^{-}\left|I_{-}^{-}\right| I_{-}^{-}| |_{-}^{-} \mid$
|_| |l_||_||_||_||_||_||_|

Sample Output

123456789
ambiguous
failure
878888888

