

Pixels in a digital picture can be represented with three integers in the range 0 to 255 that indicate the intensity of the red, green, and blue colors. To compress an image or to create an artistic effect, many photo-editing tools include a "posterize" operation which works as follows. Each color channel is examined separately; this problem focuses only on the red channel. Rather than allow all integers from 0 to 255 for the red channel, a posterized image allows at most k integers from this range. Each pixel's original red intensity is replaced with the nearest of the allowed integers. The photo-editing tool selects a set of k integers that minimizes the sum of the squared errors introduced across all pixels in the original image. If there are n pixels that have original red values r_{1}, \ldots, r_{n}, and k allowed integers v_{1}, \ldots, v_{k}, the sum of squared errors is defined as

$$
\sum_{i=1}^{n} \min _{1 \leq j \leq k}\left(r_{i}-v_{j}\right)^{2}
$$

Your task is to compute the minimum achievable sum of squared errors, given parameter k and a description of the red intensities of an image's pixels.

Input

The input file contains several test cases, each of them as described below.
The first line of the input contains two integers $d(1 \leq d \leq 256)$, the number of distinct red values that occur in the original image, and $k(1 \leq k \leq d)$, the number of distinct red values allowed in the posterized image. The remaining d lines indicate the number of pixels of the image having various red values. Each such line contains two integers $r(0 \leq r \leq 255)$ and $p\left(1 \leq p \leq 2^{26}\right)$, where r is a red intensity value and p is the number of pixels having red intensity r. Those d lines are given in increasing order of red value.

Output

For each test case, on a line by itself, display the sum of the squared errors for an optimally chosen set of k allowed integer values.

Sample Input

21
5020000
15010000
22
5020000
15010000
42
030000
2530000
5030000
25530000

Sample Output

