You are given n closed, integer intervals $\left[a_{i}, b_{i}\right]$ and n integers c_{1}, \ldots, c_{n}.
Write a program that:

- reads the number of intervals, their endpoints and integers c_{1}, \ldots, c_{n} from the standard input,
- computes the minimal size of a set Z of integers which has at least c_{i} common elements with interval $\left[a_{i}, b_{i}\right]$, for each $i=1,2, \ldots, n$,
- writes the answer to the standard output.

Input

The first line of the input cointains an integer indicating the number of datasets. It's followed by a blank line.

The first line of each dataset contains an integer $n(1 \leq n \leq 50000)$ - the number of intervals. The following n lines describe the intervals. The line $i+1$ of the input contains three integers a_{i}, b_{i}, c_{i} separated by single spaces and such that $0 \leq a_{i} \leq b_{i} \leq 50000$ and $1 \leq c_{i} \leq b_{i}-a_{i}+1$.

There is a blank line between datasets.

Output

The output for each dataset contains exactly one integer equal to the minimal size of a set Z sharing at least c_{i} elements with interval $\left[a_{i}, b_{i}\right]$, for each $i=1,2, \ldots, n$.

Print a blank line between datasets.

Sample Input

1

5
373
8103
681
131
10111

Sample Output

6

