You are given n closed, integer intervals $[a_i, b_i]$ and n integers c_1, \ldots, c_n .

Write a program that:

- reads the number of intervals, their endpoints and integers c_1, \ldots, c_n from the standard input,
- computes the minimal size of a set Z of integers which has at least c_i common elements with interval $[a_i, b_i]$, for each i = 1, 2, ..., n,
- writes the answer to the standard output.

Input

The first line of the input cointains an integer indicating the number of datasets. It's followed by a blank line.

The first line of each dataset contains an integer n ($1 \le n \le 50000$) — the number of intervals. The following n lines describe the intervals. The line i+1 of the input contains three integers a_i , b_i , c_i separated by single spaces and such that $0 \le a_i \le b_i \le 50000$ and $1 \le c_i \le b_i - a_i + 1$.

There is a blank line between datasets.

Output

The output for each dataset contains exactly one integer equal to the minimal size of a set Z sharing at least c_i elements with interval $[a_i, b_i]$, for each i = 1, 2, ..., n.

Print a blank line between datasets.

Sample Input

```
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
```

Sample Output