1745 Spin Doctor As an employee of the world's most respected political polling corporation, you must take complex, realworld issues and simplify them down to a few numbers. It isn't always easy. A big election is coming up and, at the request of Candidate X, you have just finished polling n people. You have gathered three pieces of information from each person, with the values for the *i*-th person recorded as: - a_i the number of digits of π they have memorized - b_i the number of hairs on their head - c_i whether they will vote for Candidate X Unfortunately, you are beginning to wonder if these are really the most relevant questions to ask. In fact, you cannot see any correlation between a, b, and c in the data. Of course, you cannot just contradict your customer — that is a good way to lose your job! Perhaps the answer is to find some weighting formula to make the results look meaningful. You will pick two real values S and T, and sort the poll results (a_i, b_i, c_i) by the measure $a_i \cdot S + b_i \cdot T$. The sort will look best if the results having c_i true are clustered as close to each other as possible. More precisely, if j and k are the indices of the first and last results with c_i true, you want to minimize the cluster size which is k - j + 1. Note that some choices of S and T will result in ties among the (a_i, b_i, c_i) triples. When this happens, you should assume the worst possible ordering occurs (that which maximizes the cluster size for this (S, T) pair). ### Input The input file contains several test cases, each of them as described below. The input starts with a line containing n ($1 \le n \le 250000$), which is the number of people polled. This is followed by one line for each person polled. Each of those lines contains integers a_i ($0 \le a_i \le 2000000$), b_i ($0 \le bi \le 2000000$), and c_i , where c_i is '1' if the person will vote for Candidate X and '0' otherwise. The input is guaranteed to contain at least one person who will vote for Candidate X. #### Output For each test case, display the smallest possible cluster size over all possible (S, T) pairs. ## Sample Input 6 1 1 - 8 2 0 - 4 4 0 - 4 0 0 - 2 3 1 - 6 1 0 - 6 3 1 # Sample Output - 4 - 8