In a graph G, contraction of an edge e with endpoints u, v is the replacement of u and v with a single vertex such that edges incident to the new vertex are the edges other than e that were incident with u or v. The resulting graph has one less edge than G. A graph H is a minor of a graph G if a copy of H can be obtained from G via repeated edge deletion, edge contraction and isolated node deletion.

Minors play an important role in graph theory. For example, every non-planar graph contains either the graph $\mathbf{K}_{3,3}$ (i.e., the complete bipartite graph on two sets of three vertices) or the complete graph \mathbf{K}_{5} as a graph minor.

Write a program to find a graph minor $\mathbf{K}_{n, m}$ or \mathbf{K}_{n} in an undirected connected simple graph.

Input

The input consists of several test cases. The first line of each case contains an integers $V(3 \leq V \leq 12)$, the number of vertices in the graph, followed by a string in format ' $\mathrm{K} n$ ' or ' $\mathrm{K} n, m$ ' $(1 \leq n, m \leq V)$, the graph minor you're finding. The following V lines contain the adjacency matrix of the graph ('1' means directly connected, 0 ' means not directly connected).

The diagonal elements of the matrix will always be ' 0 ', and the element in row i column j is always equal to the element in row j column i. The last test case is followed by a single zero, which should not be processed.

Output

For each test case, print the case number and the string 'Found' or 'Not found'.

Sample Input

5 K2,2
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$
10000
10000
10000
10000
4 K3
0101
1010
0101
1010
4 K2,2
0101
1011
0101
1110
$5 \mathrm{~K} 2,2$
01001
10001
00011
00101
11110
5 K4
01011
10110
01011
11101
10110
0

Sample Output

Case 1: Not found
Case 2: Found
Case 3: Found
Case 4: Not found
Case 5: Found

