
One important problem in concurrent programming is to ensure exclusive access to shared resources by
multiple threads. It is also known as Mutual Exclusion protocol. A code that needs to be protected from
concurrent execution is called critical section (CS ). In order to coordinate access to CS, application
threads use a set of shared variables to send information to each other. These shared variables are
distinct from all the variables that are used by application code. In practice, mutual exclusion protocol
is implemented as two methods — enterCS and exitCS. When application needs to execute some code
in CS, it calls enterCS, then executes CS, then calls exitCS.

For theoretical analysis of mutual exclusion protocol one must consider running application as a
whole. Each thread of application is represented as an infinite loop that repeatedly performs some
work unrelated to CS, which is called non-critical section (NCS ), then calls enterCS, then executes CS,
then calls exitCS, then the loop repeats. The code inside NCS and CS is not relevant; it is considered
to perform no operations related to the protocol and does not modify shared variables used by the
protocol.

We consider a system with two concurrently running threads. Threads use a set of shared one-bit
variables to implement mutual exclusion protocol. Each variable can store a value of zero or one that
can be read or written by a single instruction. Shared variables are initialized to zero. Each thread
has a local pointer to the instruction (IP) that it is going to execute next. Execution starts from the
top of the code. During each step of execution one of the threads is arbitrarily chosen, it executes one
instruction, and then changes its IP to the next instruction to execute. This infinite sequence of steps
is called history. A history is called legal if either both threads execute infinitely many steps or just
one thread does, while the other thread, having taken a finite number of steps, stops with IP at NCS.

The table below contains several algorithms in pseudo-code that attempt to implement mutual
exclusion protocol. In this pseudo-code id is 0 for the first thread and 1 for the second. Variables
want [0], want [1], and turn are shared between threads to implement mutual exclusion protocol. Lines
marked with ‘+’ implement enterCS, lines marked with ‘-’ implement exitCS. Lines NCS() and CS()
are placeholders for some code that works inside non-critical and critical sections respectively and is
not relevant for this problem.

Algorithm 1 Algorithm 2 Algorithm 3
loop forever

NCS()

+ loop while

+ (turn == 1 - id)

CS()

- turn <- (1 - id)

end loop

loop forever

NCS()

+ want[id] <- 1

+ loop while

+ (want[1 - id] == 1)

CS()

- want[id] <- 0

end loop

loop forever

NCS()

+ want[id] <- 1

+ turn <- (1 - id)

+ loop while

+ (want[1 - id] == 1 and

+ turn == 1 - id)

CS()

- want[id] <- 0

end loop

The task is to figure out if the given algorithm satisfies three important properties:

• The algorithm satisfies mutual exclusion if in any legal history CS is not executed concurrently
by two threads (that is, there is no step where IP of both threads is at CS).

• The algorithm satisfies deadlock freedom if any legal history has infinitely many executions of CS.

• The algorithm satisfies starvation freedom if in any legal history a thread that executes infinitely
many steps has infinitely many executions of CS.

The property of mutual exclusion is trivial. The algorithm that simply loops forever doing nothing
will satisfy it. The sample algorithms above all satisfy mutual exclusion, but the first two fail to achieve
deadlock freedom. The algorithm 3 (originally created by Gary Peterson) satisfies all three properties.

Input

The input file contains several test cases, each of them as described below.
The input starts with a line with two integer numbers — m1 and m2, where mi is the number of

lines of code for i-th thread (2 ≤ mi ≤ 9). It is followed by m1 lines with the code for the first thread
and m2 lines with the code for the second thread.

The code for each thread contains one instruction per line. Instruction starts with an integer line
number from 1 to mi (lines are numbered in ascending order and are included to aid readability),
followed by instruction mnemonic, followed by a list of instruction arguments, all separated by spaces.
The last arguments of instruction represent line numbers of the next instructions to execute (NIP
— from 1 to mi). There are three variables shared between threads — ‘A’, ‘B’, and ‘C’. Instruction
mnemonics are:

• NCS — non-critical section placeholder. Its single argument is NIP.

• CS — critical section placeholder. Its single argument is NIP.

• SET — write value to the shared variable. It has three arguments v, x, and g, where v is the
variable to write (‘A’, ‘B’, or ‘C’), x is the value to write (0 or 1), and g is NIP.

• TEST — read and test the value of the shared variable. It has three arguments v, g0, and g1 where
v is the variable to read (‘A’, ‘B’, or ‘C’), g0 is NIP if the value of the variable is zero, and g1 is
NIP if the value of the variable is one.

NCS and CS appear in the code for each thread exactly once. The code may or may not represent a
simple loop, but is guaranteed to alternate executions of CS and NCS by one thread, that is, in every
legal history two executions of CS by one thread always have NCS execution by the same thread in
between and, vice versa, two executions of NCS by one thread have CS execution by the same thread in
between.

Output

For each test case, write to the output a string of three letters on a line by itself.
Letters represent properties of mutual exclusion, deadlock freedom, and starvation freedom. Write

letter ‘Y’ if the corresponding property is satisfied and ‘N’ otherwise.

Note:
Three first samples below represent algorithms 1–3 from the problem statement.
The fourth one is an algorithm (originally created by Leslie Lamport) that uses just two shared bits

(A and B) and satisfies mutual exclusion and deadlock freedom, but is not free from starvation.
Last two are trivial algorithms. First one never executes CS nor NCS and thus guarantees mutual

exclusion, but does not have deadlock freedom, nor starvation freedom properties. Second one loops
between NCS and CS, thus fails to achieve mutual exclusion, but is free from deadlock and starvation.

Sample Input

4 4

1 NCS 2

2 TEST C 3 2

3 CS 4

4 SET C 1 1

1 NCS 2

2 TEST C 2 3

3 CS 4

4 SET C 0 1

5 5

1 NCS 2

2 SET A 1 3

3 TEST B 4 3

4 CS 5

5 SET A 0 1

1 NCS 2

2 SET B 1 3

3 TEST A 4 3

4 CS 5

5 SET B 0 1

7 7

1 NCS 2

2 SET A 1 3

3 SET C 1 4

4 TEST B 6 5

5 TEST C 6 4

6 CS 7

7 SET A 0 1

1 NCS 2

2 SET B 1 3

3 SET C 0 4

4 TEST A 6 5

5 TEST C 4 6

6 CS 7

7 SET B 0 1

5 7

1 NCS 2

2 SET A 1 3

3 TEST B 4 3

4 CS 5

5 SET A 0 1

1 NCS 2

2 SET B 1 3

3 TEST A 6 4

4 SET B 0 5

5 TEST A 2 5

6 CS 7

7 SET B 0 1

3 3

1 SET A 0 1

2 CS 2

3 NCS 3

1 TEST A 1 1

2 CS 2

3 NCS 3

2 2

1 CS 2

2 NCS 1

1 NCS 2

2 CS 1

Sample Output

YNN

YNN

YYY

YYN

YNN

NYY


