Little John studies numeral systems. After learning all about fixed-base systems, he became interested in more unusual cases. Among those cases he found a Fibonacci system, which represents all natural numbers in an unique way using only two digits: zero and one. But unlike usual binary scale of notation, in the Fibonacci system you are not allowed to place two 1 s in adjacent positions.

One can prove that if you have number $N=\overline{a_{n} a_{n-1} \ldots a_{1}}$ in Fibonacci system, its value is equal to $N=a_{n} \cdot F_{n}+a_{n-1} \cdot F_{n-1}+\ldots+a_{1} \cdot F_{1}$, where F_{k} is a usual Fibonacci sequence defined by $F_{0}=F_{1}=1$, $F_{i}=F_{i-1}+F_{i-2}$.

For example, first few natural numbers have the following unique representations in Fibonacci system:

$$
\begin{aligned}
& 1=1_{F} \\
& 2=10_{F} \\
& 3=100_{F} \\
& 4=101_{F} \\
& 5=1000_{F} \\
& 6=1001_{F} \\
& 7=1010_{F}
\end{aligned}
$$

John wrote a very long string (consider it infinite) consisting of consecutive representations of natural numbers in Fibonacci system. For example, the first few digits of this string are 110100101100010011010. .

He is very interested, how many times the digit 1 occurs in the N-th prefix of the string. Remember that the N-th prefix of the string is just a string consisting of its first N characters.

Write a program which determines how many times the digit 1 occurs in N-th prefix of John's string.

Input

The input file contains several test cases, each of them as described below.
The input contains a single integer $N\left(0 \leq N \leq 10^{15}\right)$.

Output

For each test case, output a single integer - the number of '1's in N-th prefix of John's string - on a line by itself.

Sample Input

21

Sample Output

