Consider a binary operation \odot defined on digits 0 to 9 ,

$$
\odot:\{0,1, \ldots, 9\} \times\{0,1, \ldots, 9\} \rightarrow\{0,1, \ldots, 9\}
$$

such that $0 \odot 0=0$.
A binary operation \otimes is a generalization of \odot to the set of non-negative integers,

$$
\otimes: \mathbb{Z}_{0+} \times \mathbb{Z}_{0+} \rightarrow \mathbb{Z}_{0+}
$$

The result of $a \otimes b$ is defined in the following way: if one of the numbers a and b has fewer digits than the other in decimal notation, then append leading zeroes to it, so that the numbers are of the same length; then apply the operation digit-wise to the corresponding digits of a and b.

$$
\otimes \begin{array}{r}
5566 \\
\frac{239}{? ? ? ?}
\end{array} \otimes_{\frac{5566}{? ? ? ?}}^{0239} \longrightarrow \odot_{\frac{0}{0}}^{5} \odot_{\frac{2}{0}}^{5} \odot^{6} \frac{3}{8} \odot_{\frac{6}{4}}^{6} \longrightarrow \otimes_{\frac{0239}{0084}}^{5566} \longrightarrow \quad \otimes_{\frac{239}{84}}^{556}
$$

Example. If $a \odot b=a b \bmod 10$, then $5566 \otimes 239=84$.
Let us define \otimes to be left-associative, that is, $a \otimes b \otimes c$ is to be interpreted as $(a \otimes b) \otimes c$.
Given a binary operation \odot and two non-negative integers a and b, calculate the value of

$$
a \otimes(a+1) \otimes(a+2) \otimes \ldots \otimes(b-1) \otimes b
$$

Input

The input file contains several test cases, each of them as described below.
The first ten lines of the input file contain the description of the binary operation \odot. The i-th line of the input file contains a space-separated list of ten digits - the j-th digit in this list is equal to $(i-1) \odot(j-1)$.

The first digit in the first line is always 0 .
The eleventh line of the input file contains two non-negative integers a and $b\left(0 \leq a \leq b \leq 10^{18}\right)$.

Output

For each test case, output on a line by itself a single number - the value of $a \otimes(a+1) \otimes(a+2) \otimes$ $\ldots \otimes(b-1) \otimes b$ without extra leading zeroes.

Sample Input

0	1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9	0
2	3	4	5	6	7	8	9	0	1
3	4	5	6	7	8	9	0	1	2
4	5	6	7	8	9	0	1	2	3
5	6	7	8	9	0	1	2	3	4
6	7	8	9	0	1	2	3	4	5
7	8	9	0	1	2	3	4	5	6
8	9	0	1	2	3	4	5	6	7
9	0	1	2	3	4	5	6	7	8
0	10								

Sample Output

