The fundamental theorem of arithmetic states that every integer greater than 1 can be uniquely represented as a product of one or more primes. While unique, several arrangements of the prime factors may be possible. For example:

$$
\begin{array}{rlrl}
10 & =2 * 5 & 20 & =2 * 2 * 5 \\
& =5 * 2 & & =2 * 5 * 2 \\
& =5 * 2 * 2
\end{array}
$$

Let $f(k)$ be the number of different arrangements of the prime factors of k. So $f(10)=2$ and $f(20)=3$.

Given a positive number n, there always exists at least one number k such that $f(k)=n$. We want to know the smallest such k.

Input

The input consists of at most 1000 test cases, each on a separate line. Each test case is a positive integer $n<2^{63}$.

Output

For each test case, display its number n and the smallest number $k>1$ such that $f(k)=n$. The numbers in the input are chosen such that $k<2^{63}$.

Sample Input

1
2
3
105

Sample Output

12
26
312
105720

