Here is a game played on a cycle by two players. The rule of this game is as follows: At first, a cycle is given and each edge is assigned a non-negative integer. Among those integers, at least one is zero. Further a coin is put on a vertex of the cycle. From this vertex, the game starts and proceeds with two players' alternating moves with the following series of choices:
(1) Choose an edge incident with the vertex having the coin,
(2) Decrease the value of this edge to any non-negative integer strictly,
(3) Move the coin to the adjacent vertex along this edge.

The game ends when a player on his turn cannot move because the value of each edge incident with the vertex having the coin is equal to zero. Then, that player is the loser.

Figure 1 illustrates an actual game. In this game, Alice is the first player and Bob is the second player. In the starting position in Figure 1 (a), Alice cannot but choose the right edge of the vertex having the coin. Alice then decreases its value from 2 to 0 , and moves the coin along this edge, which makes (a) into (b). Next, Bob cannot but choose the down edge of the vertex having the coin; he then decreases its value from 5 to 1, which makes (b) into (c). In Figure 1 (c), Alice chooses the up edge of the vertex having the coin and decreases its value from 1 to 0 , which makes (c) into (d). Finally, in Figure 1 (d), Bob has no move since each edge incident with the vertex having the coin is assigned to zero. Then, Alice wins this game.

Figure 1: An example of cycle game (A coin is put on the black vertex)
In fact, whenever the game starts as shown in Figure 1 (a), the first player can always win for any second player's move. In other words, in the starting position in Figure 1 (a), the first player has a winning strategy.

In this problem, you should determine whether or not the first player has a winning strategy from a given starting position.

Input

The input consists of T test cases. The number of test cases (T) is given on the first line of the input file. Each test case starts with a line containing an integer $N(3 \leq N \leq 20)$, where N is the number of vertices in a cycle. On the next line, there are the N non-negative integers assigned to the edges of the cycle. The N integers are given in clockwise order starting from the vertex having the coin and they are separated by a single space. Note that at least one integer value among the N integers must be zero and that the value of no integer can be larger than 30 .

Output

Print exactly one line for each test case. The line is to contain 'YES' if the first player has a winning strategy from the starting position. Otherwise, the line is to contain ' NO '. The following shows sample input and output for two test cases. The following shows sample input and output for two test cases.

Sample Input

2
4
2530
3
000

Sample Output

