Christiane and Matthias are playing a new game, the Number Game. The rules of the Number Game are:

Christian and Matthias take turns in choosing integer numbers greater than or equal to 2 . The following rules restrict the set of numbers which may be chosen:

R1 A number which has already been chosen by one of the players or a multiple of such a number cannot be chosen. (A number z is a multiple of a number y if z can be written as $y \cdot x$ and x is a positive integer.)

R2 A sum of two such multiples cannot be chosen either.
R3 For simplicity, a number which is greater than 20 cannot be chosen either. This enables a lot more NPCs (Non-Personal-Computers) to play this game.

The player who cannot choose any number anymore looses the Number Game.
Here is an example: Matthias starts by choosing 4 . Then Christiane is not allowed to choose 4, 8, 12 , etc. Let us assume her move is 3 . Now, the numbers $3,6,9$, etc. are excluded, too; furthermore, numbers like: $7=3+4,10=2 \cdot 3+4,11=3+2 \cdot 4,13=3 \cdot 3+4, \ldots$ are not available. So, in fact, the only numbers left are 2 and 5 . Matthias now says 2 . Since $5=2+3$ is now forbidden, too, he wins because there is no number for Christiane's move left.

Your task is to write a program which will help to play the Number Game. In general, i.e., without rule R3, this game may go on forever. However, with rule R3, it is possible to write a program that finds a strategy to win the game.

Given a game situation (a list of numbers which are not yet forbidden), your program should output all winning moves. A winning move is a move by which the player whose turn it is can force a win no matter what the other player will do. Now we define these terms more formally:

- A loosing position is a position in which either

1. all numbers are forbidden, or
2. no winning move exists.

- A winning position is a position in which a winning move exists.
- A winning move is a move after which the position is a loosing position.

Input

The first line contains the number of scenarios.
The input for each scenario describes a game position. It begins with a line containing the number $a, 0 \leq a<20$ of numbers which are still available. Next follows a single line with the a numbers still available, separated by single blanks.

You may assume that all game positions in the input could really occur in the Number Game (for example, if 3 is not in the list of numbers available, 6 will not be, either).

Output

The output for each scenario begins with a line containing 'Scenario \# i ', where i is the number of the scenario starting at 1 . In the next line either print 'There is no winning move.' if this is true for the position of the current scenario, or 'The winning moves are: $w_{1} w_{2} \ldots w_{k}$.' where the w_{i} are all the winning moves, in ascending order, separated by single blanks. The output for each scenario should be followed by a blank line.

Sample Input

2
1

2
2
23

Sample Output

Scenario \#1:

The winning moves are: 2.

Scenario \#2:
There is no winning move.

