The program fragment below performs binary search of an integer number in an array that is sorted in a nondescending order:

```
Pascal (file "sproc.pas")
C (file "sproc.c")
const
    MAXN \(=10000\);
var
    A: array[0..MAXN-1] of integer;
    N : integer;
procedure BinarySearch(x: integer);
var
    p, q, i, L: integer;
begin
    \(p:=0 ;\{\) Left border of the search \(\}\)
    \(\mathrm{q}:=\mathrm{N}-1\); \{Right border of the search \(\}\)
    \(\mathrm{L}:=0\); \{Comparison counter\}
    while \(p\) <= q do begin
        i := (p + q) div 2;
        inc(L);
        if A [i] \(=\mathrm{x}\) then begin
            writeln('Found item i = ', i,
                    ' in L = ', L, ' comparisons');
                exit
        end;
        if \(\mathrm{x}<\mathrm{A}[\mathrm{i}]\) then
            q := i - 1
        else
                p := i + 1
    end
end;
```

```
#define MAXN 10000
```

\#define MAXN 10000
int A[MAXN];
int A[MAXN];
int N;
int N;
void BinarySearch(int x)
void BinarySearch(int x)
{
{
int p, q, i, L;
int p, q, i, L;
p = 0; /*Left border of the search*/
p = 0; /*Left border of the search*/
q = N-1; /*Right border of the search*/
q = N-1; /*Right border of the search*/
L = 0; /*Comparison counter*/
L = 0; /*Comparison counter*/
while (p <= q) {
while (p <= q) {
i = (p + q) / 2;
i = (p + q) / 2;
++L;
++L;
if (A[i] == x) {
if (A[i] == x) {
printf("Found item i = %d"
printf("Found item i = %d"
" in L = %d comparisons", i, L);
" in L = %d comparisons", i, L);
return;
return;
}
}
if (x < A[i])
if (x < A[i])
q = i - 1;
q = i - 1;
else
else
p = i + 1;
p = i + 1;
}
}
}

```
}
```

Before BinarySearch was called, N was set to some integer number from 1 to 10000 inclusive and array A was filled with a nondescending integer sequence.

It is known that the procedure has terminated with the message "Found item $\mathrm{i}=X X X$ in $\mathrm{L}=$ YYY comparisons" with some known values of i and L.

Your task is to write a program that finds all possible values of N that could lead to such message. However, the number of possible values of N can be quite big. Thus, you are asked to group all consecutive N s into intervals and write down only first and last value in each interval.

Input

The input file consists of several datasets. Each datasets consists of a single line with two integers i and $L(0 \leq i<10000$ and $1 \leq L \leq 14)$, separated by a space.

Output

On the first line of each dataset write the single integer number K representing the total number of intervals for possible values of N. Then K lines shall follow listing those intervals in an ascending order. Each line shall contain two integers A_{i} and $B_{i}\left(A_{i} \leq B_{i}\right)$ separated by a space, representing first and last value of the interval.

If there are no possible values of N exist, then the output file shall contain the single ' 0 '.

Sample Input

90002
103

Sample Output

