Let $a_{1}, a_{2}, \ldots, a_{n}$ be n relatively prime positive integers. A positive integer k has a representation by $a_{1}, a_{2}, \ldots, a_{n}$ if there exist non-negative integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $k=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}$. The linear Diophantine problem of Frobenius is to determine the largest integer $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with no such representation.

The linear Diophantine problem of Frobenius has very practical application. It is equivalent to the problem of coin exchange. Given sufficient supply of coins of denominations $a_{1}, a_{2}, \ldots, a_{n}$, determine the largest amount which cannot be formed by means of these coins.

Mathematical problems, such as this, are usually difficult to solve. We shall consider a simple case in which $n=2$. In addition to $g\left(a_{1}, a_{2}\right)$, we shall also want to find $n\left(a_{1}, a_{2}\right)$ the number of positive integers that cannot be represented by a_{1} and a_{2}.

Write a program to compute $g\left(a_{1}, a_{2}\right)$ and $n\left(a_{1}, a_{2}\right)$. The following theorem may help you in designing your program.

Theorem: A positive number $k=q a_{1}+r, 0<r<a_{1}$, can be represented by $a_{1}, a_{2}, \ldots, a_{n}$ if and only if $k \geq t_{r}$, where t_{r} is the smallest positive integer which has the same residue r modulo a_{1} and can be represented by $a_{2}, a_{3}, \ldots, a_{n}$.

Input

The input file will consist of one or more cases. Each case contains two positive integers a_{1} and a_{2} in a line. The product of a_{1} and a_{2} is less than 2^{32}. A line containing two zeros follows the last case, and terminates the input file.

Output

For each case a_{1} and a_{2} in the input file, the output file should contain a line with two numbers $g\left(a_{1}, a_{2}\right)$ and $n\left(a_{1}, a_{2}\right)$ separated by a blank.

Sample Input

35
2320
00

Sample Output

74
417209

