A lattice point is a point (x, y) in the 2-dimensional $x y$-plane with $x, y \in \mathbb{Z}$, where \mathbb{Z} be the set of integers. Let

$$
P(r)=\left\{(x, y) \mid x^{2}+y^{2} \leq r^{2},(x, y) \text { is a lattice point in the } x y \text {-plane }\right\}
$$

and we denote $D(r)$ be the number of elements in $P(r)$. For each lattice point (x, y) in the $x y$-plane, let

$$
S(x, y)=\{(u, v) \mid x \leq u \leq x+1, y \leq v \leq y+1\}
$$

and

$$
B(r)=\left\{(x, y) \mid x^{2}+y^{2} \leq r^{2}, x \text { and } y \text { are real numbers }\right\}
$$

Then it is easy to verify that when $r>\sqrt{2}$

$$
B(r-\sqrt{2}) \subset \bigcup_{(x, y) \in P(r)} S(x, y) \subset B(r+\sqrt{2})
$$

We know that

$$
\text { Area }\left(\bigcup_{(x, y) \in P(r)} S(x, y)\right)=\sum_{(x, y) \in P(r)} \operatorname{Area}(S(x, y))=\sum_{(x, y) \in P(r)} 1=D(r) \text {. }
$$

Hence

$$
\pi(r-\sqrt{2})^{2}<D(r)<\pi(r+\sqrt{2})^{2}
$$

This implies

$$
\pi\left(1-\frac{\sqrt{2}}{r}\right)^{2}<\frac{D(r)}{r^{2}}<\pi\left(1+\frac{\sqrt{2}}{r}\right)^{2}
$$

It yields

$$
\lim _{r \rightarrow \infty} \frac{D(r)}{r^{2}}=\pi
$$

So if we can calculate $D(r)$ for a large r, then we can estimate the value of π.
The following C function can be used to calculate the value of $D(r)$ withing a reasonable aumount of time when r is a small integer, say e.g., $1 \leq r \leq 10,000$.

```
long D(long r)
{ long x,y,count=0;
    for(x=-r;x<=r;x++)
        for(y=-r;y<=r;y++)
            if( }\textrm{x}*\textrm{x}+\textrm{y}*\textrm{y}<=r*r
            count++;
    return count;
}
```

Is is easy to obtained $D(1)=5, D(2)=13, D(3)=29$, and $D(10000)=314159053$ using this program. Recall that $\pi=3.14159 \ldots$... Your task is to find $D(r)$ for a large r within a reasonable amount of time.

Input

There are multiple lanes in the input file, the k-th line contain an integer $n_{k}\left(1 \leq n_{k} \leq 100,000,000\right)$.

Output

List integer n_{k} in line $2 k-1$ and the value of $D\left(n_{k}\right)$ in line $2 k$ for $k=1,2,3,4,5, \ldots$

Sample Input

1
2
3
10000
100000000

Sample Output

