Dr. Extreme experimentally made an extremely precise telescope to investigate extremely curi- ous phenomena at an extremely distant place. In order to make the telescope so precise as to investigate phenomena at such an extremely distant place, even quite a small distortion is not allowed. However, he forgot the influence of the internal gas affected by low-frequency vibration of magnetic flux passing through the telescope. The cylinder of the telescope is not affected by the low-frequency vibration, but the internal gas is.

The cross section of the telescope forms a perfect circle. If he forms a coil by putting extremely thin wire along the (inner) circumference, he can measure (the average vertical component of) the temporal variation of magnetic flux:such measurement would be useful to estimate the influence. But points on the circumference at which the wire can be fixed are limited; furthermore, the number of special clips to fix the wire is also limited. To obtain the highest sensitivity, he wishes to form a coil of a polygon shape with the largest area by stringing the wire among carefully selected points on the circumference.

Your job is to write a program which reports the maximum area of all possible m-polygons (polygons with exactly m vertices) each of whose vertices is one of the n points given on a circumference with a radius of 1 . An example of the case $n=4$ and $m=3$ is illustrated below.

In the figure above, the equations such as " $p_{1}=0.0$ " indicate the locations of the n given points, and the decimals such as " 1.000000 " on m-polygons indicate the areas of m-polygons.

Parameter p_{i} denotes the location of the i-th given point on the circumference $(1 \leq i \leq n)$. The location p of a point on the circumference is in the range $0 \leq p<1$, corresponding to the range of rotation angles from 0 to 2π radians. That is, the rotation angle of a point at p to the point at 0 equals $2 \pi p$ radians. (π is the circular constant $3.14159265358979323846 \ldots$...)

You may rely on the fact that the area of an isosceles triangle $\mathrm{ABC}(\mathrm{AB}=\mathrm{AC}=1)$ with an interior angle BAC of α radians $(0<\alpha<\pi)$ is $\frac{1}{2} \sin \alpha$, and the area of a polygon inside a circle with a radius of 1 is less than π.

Input

The input consists of multiple subproblems followed by a line containing two zeros that indicates the end of the input. Each subproblem is given in the following format.
$n \quad m$
$p_{1} \quad p_{2} \quad \cdots \quad p_{n}$
n is the number of points on the circumference $(3 \leq n \leq 40) . m$ is the number of vertices to form m-polygons ($3 \leq m \leq n$). The locations of n points, $p_{1}, p_{2}, \ldots, p_{n}$, are given as decimals and they are separated by either a space character or a newline. In addition, you may assume that $0 \leq p_{1}<p_{2}<$ $\cdots<p_{n}<1$.

Output

For each subproblem, the maximum area should be output, each in a separate line. Each value in the output may not have an error greater than 0.000001 and its fractional part should be represented by 6 decimal digits after the decimal point.

Sample Input

43
0.00 .250 .50 .66666666666666666667

44
0.00 .250 .50 .75

3015
$\begin{array}{llllllllll}0.00 & 0.03 & 0.06 & 0.09 & 0.12 & 0.15 & 0.18 & 0.21 & 0.24 & 0.27\end{array}$
$0.30 \quad 0.330 .360 .390 .420 .450 .480 .510 .540 .57$
$\begin{array}{llllllllllllllllll}0.61 & 0.64 & 0.66 & 0.69 & 0.72 & 0.75 & 0.78 & 0.81 & 0.84 & 0.87\end{array}$
4020
$\begin{array}{llllllllll}0.351 & 0.353 & 0.355 & 0.357 & 0.359 & 0.361 & 0.363 & 0.365 & 0.367 & 0.369\end{array}$
$\begin{array}{lllllllllllllll}0.371 & 0.373 & 0.375 & 0.377 & 0.379 & 0.381 & 0.383 & 0.385 & 0.387 & 0.389\end{array}$
$\begin{array}{lllllllllll}0.611 & 0.613 & 0.615 & 0.617 & 0.619 & 0.621 & 0.623 & 0.625 & 0.627 & 0.629\end{array}$
$\begin{array}{lllllllllllll}0.631 & 0.633 & 0.635 & 0.637 & 0.639 & 0.641 & 0.643 & 0.645 & 0.647 & 0.649\end{array}$
00

Sample Output

1.183013
2.000000
3.026998
0.253581

